Nguyễn Khánh Thuận * , Dương Cẩm Linh , Nguyễn Hồ Thanh Tuyền Bùi Thị Lê Minh

* Tác giả liên hệ (nkthuan@ctu.edu.vn)

Abstract

By PCR method, in a total of 52 Escherichia coli strains isolated from pork and the environment, genes stx2 (42.30%) and eae (17.31%) were detected at a high rate, but genes stx1 and hlyA were not found. Moreover, only genes encoding adhesion factors F18 (5.77%) and F41 (1.92%) were determined, but F4 and F5 were not found. E. coli strains examined for antimicrobial susceptibility showed that these strains were highly resistant to ampicillin (92.31%), amoxicillin/clavulanic acid (86.54%), streptomycin (82.69%), and colistin (44.23%). There were 90.38% of E. coli strains resistant to 2 to 6 tested antibiotic types, and the pattern of Am + Sm  (21.15%) was the most common. The results of PCR analysis showed that the genes blaTEM (92.30%) and aadA1 (48.07%) accounted for a high proportion. 96.15% of E. coli strains harbored from 1 to 3 antibiotic resistance genes, and the pattern of blaTEM + aadA1 was commonly recorded in strains from pork and the environment. Therefore, it is necessary to control contamination with antibiotic-resistance E. coli strains in slaughterhouses to protect public health.

Keywords: An Giang, antibiotic resistance, E. coli, pathogenicity, slaughterhouse

Tóm tắt

Bằng phương pháp PCR, trong tổng số 52 chủng Escherichia coli được phân lập từ thịt heo và môi trường giết mổ đã xác định sự hiện diện cao của gene stx2 (42,30%), eae (17,31%) nhưng không tìm thấy gene stx1 và hlyA. Đồng thời, chỉ tìm thấy gene mã hóa yếu tố bám dính F18 (5,77%), F41 (1,92%) nhưng không tìm thấy F4 và F5. Các chủng E. coli được kiểm tra sự nhạy cảm với kháng sinh cho thấy các chủng này đã đề kháng rất cao với ampicillin (92,31%), amoxicillin/clavulanic acid (86,54%), streptomycin (82,69%) và colistin (44,23%). Có 90,38% chủng E. coli đề kháng từ 2 đến 6 loại kháng sinh được kiểm tra, và kiểu hình Am + Sm (21,15%) phổ biến nhất. Kết quả phân tích bằng PCR ghi nhận gene blaTEM (92,30%) và aadA1(48,07%) chiếm tỷ lệ cao. Có 96,15% chủng E. coli mang từ 1 đến 3 gene đề kháng kháng sinh, và kiểu ghép gene blaTEM + aadA1 được tìm thấy phổ biến trên các chủng từ thịt tươi và môi trường. Do đó, việc kiểm soát sự vấy nhiễm các chủng E. coli đề kháng kháng sinh  tại cơ sở giết mổ là cần thiết để bảo vệ sức khỏe cộng đồng.

Từ khóa: An Giang, cơ sở giết mổ, đề kháng kháng sinh, độc lực, E. coli

Article Details

Tài liệu tham khảo

Ahmad, A., Ghosh, A., Schal, C., & Zurek, L. (2011). Insects in confined swine operations carry a large antibiotic resistant and potentially virulent enterococcal community. BMC Microbiology, 11, 1-13. https://doi.org/10.1186/1471-2180-11-23

Arancia, S., Iurescia, M., Lorenzetti, S., Stravino, F., Buccella, C., Caprioli, A., Franco, A., Battisti, A., Morabito, S., & Tozzoli, R. (2019). Detection and isolation of Shiga Toxin-producing Escherichia coli (STEC) strains in caecal samples from pigs at slaughter in Italy. Veterinary Medicine and Science, 5(3), 462-469. https://doi.org/10.1002/vms3.175

Armstrong, G.L., Hollingsworth, J., & Morris Jr, J.G. (1996). Emerging foodborne pathogens: Escherichia coli O157:H7 as a model of entry of a new pathogen into the food supply of the developed world. Epidemiologic Reviews, 18(1), 29-51. https://doi.org/10.1093/oxfordjournals.epirev.a017914

Bardasi, L., Taddei, R., Fiocchi, I., Pelliconi, M. F., Ramini, M., Toschi, E., & Merialdi, G. (2017). Shiga toxin-producing Escherichia coli in slaughtered pigs and pork products. Italian Journal of Food Safety, 6(2), 79-82. https://doi.org/10.4081/ijfs.2017.6584

Bauer, A. W, Kirby, W. M. M, Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45, 493–496. PMID: 5325707

Boerlin, P., Travis, R., Gyles, C. L., Reid-Smith, R., Heather Lim, N. J., Nicholson, V., McEwen, S. A., Friendship, R., & Archambault, M. (2005). Antimicrobial Resistance and Virulence Genes of Escherichia coli Isolates from Swine in Ontario. Applied and Environmental Microbiology, 71(11), 6753-6761. https://doi.org/10.1128/AEM.71.11.6753-6761.2005

CLSI. (2020). Performance standards for antimicrobial susceptibility testing 30th ed. M100-S24. Clinical and Laboratory Standards Institute, 34(1), 226.

Colello, R., Cáceres, M.E., Ruiz, M.J., Sanz, M., Etcheverría, A.I., & Padola, N. L. (2016). From farm to table: Follow-Up of Shiga Toxin-Producing Escherichia coli throughout the pork production chain in Argentina. Frontiers in Microbiology, 7, 172896.
https://doi.org/10.3389/fmicb.2016.00093.

Donnenberg, M. S., & Nataro, J. P. (1995). Methods for studying adhesion of diarrheagenic Escherichia coli. Methods in enzymology, 253, 324–336.
https://doi.org/10.1016/s0076-6879(95)53028-2.

Fairbrother, J. M., & Nadeau, E. (2006). Escherichia coli: on-farm contamination of animals. Revue Scientifique et Technique, 25(2), 555-69.

Franck, S. M., Bosworth, B. T., & Moon, H. W. (1998). Multiplex PCR for enterotoxigenic, attaching and effacing, and Shiga toxin-producing Escherichia coli strains from calves. Journal of Clinical Microbiology, 36(6), 1795-1797. https://doi.org/10.1128%2Fjcm.36.6.1795-1797.1998

Gibellini, M., Bonilauri, P., Gherpelli, Y., Giovanardi, D., Marzani, K., Torri, D., Dottori, M., Ferro, P., Scandurra, S., Maioli, G., Hidalgo A., & Luppi A. (2015). Prevalence of virulence factors associated with post weaning diarrhoea (PWD) in pigs in Italy. In: Atti della Società Italiana di Patologia ed Allevamento dei Suini, XLI Meeting Annuale, Montichiari, Italia, 19-20 Marzo 2015 (pp. 199-208). Società Italiana di Patologia ed Allevamento dei Suini (SIPAS).

Homeier-Bachmann, T., Heiden, S. E., Lübcke, P.K., Bachmann, L., Bohnert, J.A., Zimmermann, D., & Schaufler, K. (2021). Antibiotic-resistant Enterobacteriaceae in wastewater of abattoirs. Antibiotics, 10(5), 568. https://doi.org/10.3390/antibiotics10050568

Hung, V. K., Holoda E., Pilipcinec E., Blanco M., Blanco J. E., Mora A., Dahbi G., Lopez C., Gonzalez E.A., & Blanco J. (2006). Serotypes, virulence genes, and PFGE profiles of Escherichia coli isolated from pigs with postweaning diarrhea in Slovakia. BMC Veterinary Research, 20, 2-10. https://doi.org/10.1186%2F1746-6148-2-10

Huynh, X. T. A., & Ly, K. T. L. (2018). Isolation of Escherichia coli caused edema disease in post-weaning pigs in Kien Giang province. CTU Journal of Science, 54(CĐ Nông nghiệp), 23-32. (in Vietnamese). https://doi.org/10.22144/ctu.jsi.2018.062

Hyo, B. K., Hyun, B., SooJin, L., Yang Ho, J., Suk Chan, J., Aeran, K., & Nong, H. C. (2011). Prevalence and antimicrobial resistance of Salmonella spp. and Escherichia coli isolated from pigs at slaughterhouses in Korea. African Journal of Microbiology Research, 5(7), 823–830.
https://doi.org/10.5897/ajmr10.850.

Jaja, I. F., Oguttu, J., Jaja, C. J. I., & Green, E. (2020). Prevalence and distribution of antimicrobial resistance determinants of Escherichia coli isolates obtained from meat in South Africa. PLOS ONE, 15(5), e0216914. https://doi.org/10.1371/journal.pone.0216914.

Janben, T., Schwarz, C., Preikschat, P., Voss, M., Philipp, H.C., & Wieler, L.H. (2001). Virulence-associated genes in avian pathogenic Escherichia coli (APEC) isolated from internal organs of poultry having died from colibacillosis. International Journal of Medical Microbiology, 291(5), 371-378.
https://doi.org/ 10.1078/1438-4221-00143.

Jouini, A., Vinué, L., Slama, K.B., Saenz, Y., Klibi, N., Hammami, S., Boudabous, A., & Torres, C. (2007). Characterization of CTX-M and SHV extended-spectrum β-lactamases and associated resistance genes in Escherichia coli strains of food samples in Tunisia. Journal of Antimicrobial Chemotherapy, 60(5), 1137-1141. https://doi.org/10.1093/jac/dkm316

Lee, M., Shin, E., & Lee, Y. (2014). Antimicrobial resistance and integron profiles in multidrug-resistant Escherichia coli isolates from pigs. Foodborne Pathogens and Disease, 11(12), 988–997.
https://doi.org/10.1089/fpd.2014.1795.

Lee, S. W., & Edlin, G. (1985). Expression of tetracycline resistance in pBR322 derivatives reduces the reproductive fitness of plasmid-containing Escherichia coli. Gene, 39(2-3), 173–180.
https://doi.org/10.1016/0378-1119(85)90311-7

Liu, B., & Pop, M. (2009). ARDB antibiotic resistance genes database. Nucleic Acids Research, 37(1), 443-447. https://doi.org/10.1093/nar/gkn656

Liu, F., Hu, Y., Lin, I.Y.C., Gao, G.F., & Zhu, B. (2016). Dissemination of the mcr-1 colistin resistance gene. The Lancet Infectious Diseases, 16(2), 146–147.
https://doi.org/10.1016/s1473-3099(15)00533-2.

Loukiadis, E., Kerouredan, M., Beutin, L., Oswald, E., & Brugere, H. (2006). Characterization of Shiga toxin gene (stx)-positive and intimin gene (eae)-positive Escherichia coli isolates from wastewater of slaughterhouses in France. Applied and Environmental Microbiology, 72(5), 3245–3251.
https://doi.org/ 10.1128%2FAEM.72.5.3245-3251.2006.

Luu, T. M. (2020). Survey on the circulation and antibiotic resistance of Escherichia coli in pigs, environment and animals at slaughterhouse in Binh Minh town, Vinh Long province (Ungraduate thesis). Can Tho University. (in Vietnamese).

Ly, K. T. L., & Nguyen, T.T. (2016). Study on the variation of quality of pork at markets and supermarkets. CTU Journal of Science (CĐ Nông nghiệp), 11(2), 61-68 (in Vietnamese). https://doi.org/10.22144/ctu.jsi.2016.045

Mohamed, L., Ge, Z., Yuehua, L., Yubin, G., Rachid, K., Mustapha, O., Junwei, W., & Karine, O. (2018). Virulence traits of avian pathogenic (APEC) and fecal (AFEC) E. coli isolated from broiler chickens in Algeria. Tropical animal health and production, 50(3), 547-553. https://doi.org/10.1007/s11250-017-1467-5

Murvey, M. A. (2002). Adhesion and entry of uropathogenic Escherichia coli. Cellular Microbiology, 4(5), 257-271. https://doi.org/10.1046/j.1462-5822.2002.00193.x

Nguyen, C. T. H., Ha, T. T., & Ly, K. T. L. (2014). Distribution of virulent genes of Enterotoxigenic Escherichia coli strains from diarrheal piglets in the Mekong Delta, Vietnam. CTU Journal of Science, 33, 68-77 (in Vietnamese). https://ctujsvn.ctu.edu.vn/index.php/ctujsvn/article/view/198.

Nguyen, T. Q., Ngo, S. K., Nguyen, Q. Đ., & Nguyen, C.H. (2016). Application of real-time polymerase chain reaction coupled with high-resolution melting analysis for detection of stx1, stx2, eae, EHXA genes. Ho Chi Minh City Journal of Medicine, 20(5), 374-380 (in Vietnamese).

Ojeniyi, B., Ahrens, P., & Meyling, A. (1994). Detection of fimbrial and toxin genes in Escherichia coli and their prevalence in piglets with diarrhoea. The application of colony hybridization assay, polymerase chain reaction and phenotypic assays. Zentralbl Veterinarmed B, 41, 49-59.
https://doi.org/10.1111/j.1439-0450.1994.tb00205.x

Paton, J. C., & Paton, A. W. (1998). Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clinical Microbiology Reviews, 11(3), 450-479. https://doi.org/10.1128%2Fcmr.11.3.450

Poirel, L., Madec, J.Y., Lupo, A., Schink, A.K., Kieffer, N., Nordmann, P., & Schwarz, S. (2018). Antimicrobial resistance in Escherichia coli. Microbiology Spectrum, 6(4). https://doi.org/10.1128/microbiolspec.arba-0026-2017

Ramos, S., Silva, N., Caniça, M., Capelo-Martinez, J.L., Brito, F., Igrejas, G., & Poeta, P. (2013). High prevalence of antimicrobial-resistant Escherichia coli from animals at slaughter: a food safety risk. Journal of the Science of Food and Agriculture, 93(3), 517-526. https://doi.org/10.1002/jsfa.5814

Randall, L. P., Cooles, S. W., Osborn, M. K., Piddock, L. J. V., & Woodward, M. J. (2004). Antibiotic resistance genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella enterica isolated from humans and animals in the UK. Journal of Antimicrobial Chemotherapy, 53(2), 208-216. https://doi.org/10.1093/jac/dkh070

Remfry, S.E., Amachawadi, R.G., Shi, X., Bai, J., Woodworth, J.C., Tokach, M.D., Dritz, S.S., Goodband, R.D., DeRouchey, J.M., & Nagaraja, T.G. (2020). Polymerase chain reaction-based prevalence of serogroups of Escherichia coli known to carry Shiga Toxin genes in feces of finisher pigs. Foodborne Pathogens and Disease, 17(12), 782-791. https://doi.org/10.1089/fpd.2020.2814

Sacher-Pirklbauer, A., Klein-Jöbstl, D., Sofka, D., Blanc-Potard, A.B., & Hilbert, F. (2021). Phylogenetic groups and antimicrobial resistance genes in Escherichia coli from different meat species. Antibiotics (Basel), 10(12), 1543.
https://doi.org/10.3390/antibiotics10121543

Santos, R. L. D., Davanzo, E. F. A., Palma, J. M., Castro, V. H. D. L., Costa, H. M. B. D., Dallago, B. S. L., Perecmanis, S., & Santana, A.P. (2022). Molecular characterization and biofilm-formation analysis of Listeria monocytogenes, Salmonella spp., and Escherichia coli isolated from Brazilian swine slaughterhouses. PLoS One, 17(9), e0274636.
https://doi.org/ 10.1371/journal.pone.0274636.

Savin, M., Bierbaum, G., Hammerl, J.A., Heinemann, C., Parcina, M., Sib, E., & Kreyenschmidt, J. (2020). Antibiotic-resistant bacteria and antimicrobial residues in wastewater and process water from German pig slaughterhouses and their receiving municipal wastewater treatment plants. Science of The Total Environment, 727, 138788. https://doi.org/10.1016/j.scitotenv.2020.1387.

Son, I., Binet, R., Maounounen - Laasri, A., Lin, A., Hammack, T.S, & ASE, J.A., (2014). Detection of five Shiga toxin-producing Escherichia coli genes with multiplex PCR. Food Microbiology, 40, 30-40. https://doi.org/10.1016/j.fm.2013.11.016

Stasiak, M., Mackiw, E., Kowalska, J., Kucharek, K., & Postupolski, J. (2021). Silent genes: antimicrobial resistance and antibiotic production. Polish Journal of Microbiology, 70(4), 421-429.
https://doi.org/10.33073/pjm-2021-040

Sudarwanto, M. B., Lukman, D. W., Purnawarman, T., Latif, H., Pisestyani, H., & Sukmawinata, E. (2017). Multidrug resistance extended spectrum β-lactamase and AmpC producing Escherichia coli isolated from the environment of Bogor Slaughterhouse, Indonesia. Asian Pacific Journal of Tropical Biomedicine, 7(8), 708-711. https://doi.org/10.1016/j.apjtb.2017.07.012.

Toledo, A., Gomez, D., Cruz, C., Carreon, R., Lopez, J., Giono, S., & Castro, A.M. (2012). Prevalence of virulence genes in Escherichia coli strains isolated from piglets in the suckling and weaning period in Mexico. Journal of Medical Microbiology, 61(1), 148–156. https://doi.org/10.1099/jmm.0.031302-0

Tran, T. T. L., Nguyen, T. K., Nguyen, T. V., Lam, K. T., & Ly, K. T. L. (2022). The contamination and antibiotic resistance of Escherichia coli isolated from pork and environments at the slaughterhouses in Chau Thanh district, An Giang province. CTU Journal of Science, 58(1), 189-196 (in Vietnamese). https://doi.org/10.22144/ctu.jvn.2022.021

Truong, D. T. Q., Pham, N. T., Ngo, T. C., Dang, S. T. T., Tran, N. T., & Truong, G. T. H. (2017). Antibiotic resistance and gene producing β–lactamaza of ESBL producing E. coli isolated from pig slaughterhouses in Ha Noi City. Journal of Veterinary Science and Technology, 24(3), 31-38 (in Vietnamese).

Wei, S. H. (2013). Escherichia coli contamination of pork carcasses in UK slaughterhouses (Ph.D. thesis). University of Nottingham, The UK.

Wolny-Koładka, K., & Lenart-Boroń, A. (2016). Phenotypic and molecular assessment of drug resistance profile and genetic diversity of waterborne Escherichia coli. Water, Air, and Soil Pollution, 227, 146. https://doi.org/10.1007/s11270-016-2833-z

Yamamoto, S., Iwabuchi, E., Hasegawa, M., Esakim, H., Muramatsu, M., Hirayama, N., & Hirai, K. (2013). Prevalence and molecular epidemiological characterization of antimicrobial-resistant Escherichia coli isolates from Japanese black beef cattle. Journal of Food Protection, 76(3), 394-404. https://doi.org/10.4315/0362-028x.jfp-12-273