Nguyễn Văn Chí * , Nguyễn Phương Tùng , Phạm Duy Khanh Trần Ngọc Quyển

* Tác giả liên hệ (chi.nv@vlu.edu.vn)

Abstract

Dehydration of glucose into 5-hydroxymethylfurfural (HMF) was one of the most reactions in biomass conversion into high-value chemicals. This work aims to synthesize a catalyst for the efficient production of HMF from glucose. P-UiO-66 has been prepared and characterized using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Fourier-transform Infrared Spectroscopy (FT-IR). The synthesized catalyst showed excellent performance for the conversion of glucose into HMF. 99% HMF was achieved under optimal conditions (180oC, 8 h, 0.05 g catalyst). In addition, the P-UiO-66 was stable and highly active during the reaction condition, which can be reused four times without a significant decrease in HMF yield.

Keywords: 5-hydroxylmethylfurfural, heterogeneous catalyst, Glucose conversion, P-UiO-66

Tóm tắt

Phản ứng tách nước từ glucose thành 5-hydroxymethylfurfural (HMF) là một phản ứng quan trọng của quá trình chuyển hóa nguyên liệu sinh khối. Nghiên cứu này nhằm tổng hợp chất xúc tác để sản xuất HMF từ glucose với hiệu suất cao. Vật liệu P-UiO-66 đã được tổng hợp và xác định tính chất thông qua nhiễu xạ nhiễu xạ X-ray (XRD), kính hiển vi điện tử quét (SEM) và phổ hồng ngoại (FT-IR). Chất xúc tác tổng hợp thể hiện hoạt tính rất cao trong phản ứng tách nước từ glucose thành HMF. Hiệu suất HMF thu được là 99% trong điều kiện tối ưu (180oC, 8  giờ, 0,05 g chất xúc tác). Hơn nữa, chất xúc tác này có độ bền cao và có thể tái sử dụng bốn lần mà không giảm hoạt tính đáng kể.  

Từ khóa: Chuyển hóa glucose, 5-hydroxylmethylfurfural, P-UiO-66, xúc tác dị thể

Article Details

Tài liệu tham khảo

Akiyama, G., Matsuda, R., Sato, H., Takata, M., & Kitagawa, S. (2011). Cellulose hydrolysis by a new porous coordination polymer decorated with sulfonic acid functional groups. Advanced Materials, 23(29), 3294-3297. https://doi.org/10.1002/adma.201101356

Calleja, G., Sanz, R., Orcajo, G., Briones, D., Leo, P., & Martínez, F. (2014). Copper-based MOF-74 material as effective acid catalyst in Friedel–Crafts acylation of anisole. Catalysis Today, 227, 130-137. https://doi.org/10.1016/j.cattod.2013.11.062

Cao, W., Luo, W., Ge, H., Su, Y., Wang, A., & Zhanga, T. (2017). UiO-66 derived Ru/ZrO2@C as a highly stable catalyst for hydrogenation of levulinic acid to γ-valerolactone. Green Chemistry, 19, 2201-2211. https://doi.org/10.1039/C7GC00512A

Chheda, J. N., Román-Leshkov, Y., & Dumesic, J. A. (2007). Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono-and poly-saccharides. Green Chemistry, 9(4), 342-350.

Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16, 516-547. DOI https://doi.org/10.1039/C3GC41492B

Dorneles de Mello, M., Kumar, G., Tabassum, T., Jain, S. K., Chen, T. H., Caratzoulas, S., . . . Scott, S. L. (2020). Phosphonate‐Modified UiO‐66 Brønsted Acid Catalyst and Its Use in Dehydra‐Decyclization of 2‐Methyltetrahydrofuran to Pentadienes. Angewandte Chemie International Edition, 59(32), 13260-13266. https://doi.org/10.1002/anie.202001332

Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., OÕKeeffe, M., & Yaghi, O. M. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage Science, 295, 469-472. DOI: 10.1126/science.106720

Gallezot, P. (2012). Conversion of biomass to selected chemical products. Chemistry Society Reveviews, 41, 1538-1558. https://doi.org/10.1039/C1CS15147A

Gao, S., Zhao, N., Shu, M., & Che, S. (2010). Palladium nanoparticles supported on MOF-5: A highly active catalyst for a ligand-and copper-free Sonogashira coupling reaction. Applied Catalysis A: General, 388(1-2), 196-201. https://doi.org/10.1016/j.apcata.2010.08.045

Hou, Q., Li, W., Ju, M., Liu, L., Chen, Y., & Yang, Q. (2016). One-pot synthesis of sulfonated graphene oxide for efficient conversion of fructose into HMF. RSC Advances, 6(106), 104016-104024. DOI: 10.1039/C6RA23420H

Kousik, S., & Velmathi, S. (2019). Engineering Metal–Organic Framework Catalysts for C− C and C− X Coupling Reactions: Advances in Reticular Approaches from 2014–2018. Chemistry–A European Journal, 25(72), 16451-16505. https://doi.org/10.1002/chem.201901987

Laboratory, P. N. N. L. N. R. E. (2004). Top Value Added Chemicals From Biomass. Retrieved from U.S. Department of Energy:

Liao, Y.-T., Matsagar, B. M., & Wu, K. C.-W. (2018). Metal−Organic Framework (MOF)-Derived Effective Solid Catalysts for Valorization of Lignocellulosic Biomass. ACS Sustainable Chemistry Engineering, 6, 13628-13643. https://doi.org/10.1021/acssuschemeng.8b03683

Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., & Pastre, J. (2006). Metal–organic frameworks—prospective industrial applications. Journal Material Chemistry, 16, 626-636. https://doi.org/10.1039/B511962F

Phan, N. T., Le, K. K., & Phan, T. D.. (2010). MOF-5 as an efficient heterogeneous catalyst for Friedel–Crafts alkylation reactions. Applied Catalysis A: General, 382(2), 246-253. https://doi.org/10.1016/j.apcata.2010.04.053

Rimoldi, M., Howarth, A. J., DeStefano, M. R., Lin, L., Goswami, S., Li, P., . . . Farha, O. K. (2017). Catalytic zirconium/hafnium-based metal–organic frameworks. ACS Catalysis, 7(2), 997-1014. https://doi.org/10.1021/acscatal.6b02923

Rosatella, A. A., Simeonov, S. P., Frade, R. F., & Afonso, C. A. (2011). 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry, 13(4), 754-793. https://doi.org/10.1039/C0GC00401D

Ståhlberg, T., Rodriguez‐Rodriguez, S., Fristrup, P., & Riisager, A. (2011). Metal‐free dehydration of glucose to 5‐(hydroxylmethyl) furfural in ionic liquids with boric acid as a promoter. Chemistry–A European Journal, 17(5), 1456-1464. https://doi.org/10.1002/chem.201002171

Van Nguyen, C., Yeh, J.-Y., Van Tran, T., & Wu, K. C.-W. (2022). Highly efficient one-pot conversion of saccharides to 2, 5-dimethylfuran using P-UiO-66 and Ni–Co@ NC noble metal-free catalysts. Green Chemistry, 24(13), 5070-5076. https://doi.org/10.1039/D2GC01408D

Yabushita, M., Li, P., Islamoglu, T., Kobayashi, H., Fukuoka, A., Farha, O. K., & Katz, A. (2017). Selective metal–organic framework catalysis of glucose to 5-hydroxymethylfurfural using phosphate-modified NU-1000. Industrial & Engineering Chemistry Research, 56(25), 7141-7148. https://doi.org/10.1021/acs.iecr.7b01164

Zhang, Y., Pidko, E. A., & Hensen, E. J. (2011). Molecular aspects of glucose dehydration by chromium chlorides in ionic liquids. Chemistry–A European Journal, 17(19), 5281-5288. https://doi.org/10.1002/chem.201003645