The effect of different concentrations of β-cyclodextrin and spray drying process parameters on physicochemical and sensory properties of Long Co Co pomelo (Citrus grandis (L.) osbeck) juice powder
Abstract
This study aimed to determine the impact of concentrations of β-cyclodextrin (βCD) (2, 4, 6%) combine with 10% mixture maltodextrin/gum Arabic (85%/15%) and spray-drying conditions, inlet temperature (160 - 180oC) and feed rate levels (375, 555, 750 mL/h) on the sensory and physicochemical (moisture content, water activity- aw, color, yield, flavonoid content -TFC, total polyphenol content -TPC, and vitamin C content) properties of pomelo juice powder. The results showed that concentrations of 4% β-cyclodextrin obtained the best results for yield, TPC, vitamin, and TFC content were the highest. Although the spray drying was carried out of 160◦C and a feed rate of 750 mL/h, the recovery efficiency was low (51.82%), but the retention capacity of TPC, vitamin C and TFC contents was higher (2.87 mgGAE/g, 204.36 mg/100g and 6.04 mgQE/g, respectively). The pomelo powder had moisture and water activity of 8.69% and 0.45, respectively, suitable for storage and transportation. The research results contributed to improving the use and economic value of Co Co pomelo locally.
Tóm tắt
Mục tiêu của nghiên cứu này là khảo sát ảnh hưởng của tỷ lệ chất trợ sấy β-cyclodextrin (βCD) (2, 4, 6%) kết hợp với 10% hỗn hợp maltodextrin/gum Arabic (85%/15%) và điều kiện sấy gồm nhiệt độ đầu vào (160, 170, 1800C) và tốc độ bơm 378, 555, 750 mL/giờ đến tính chất cảm quan và hóa lý (độ ẩm, hoạt độ nước - aw, thời gian hòa tan, màu sắc, vitamin C, polyphenol – TPC, flavonoid – TFC) của bột bưởi. Kết quả cho thấy, với tỷ lệ 4% (w/v) βCD đem lại hiệu quả sấy tốt nhất với hiệu suất thu hồi, hàm lượng TPC, vitamin C, TFC và điểm cảm quan cao nhất. Bên cạnh đó, bột được sấy ở nhiệt độ 160◦C và tốc độ bơm 750 mL/giờ mặc dù cho hiệu suất thu hồi thấp (51,82%) tuy nhiên khả năng lưu giữ các thành phần TPC, vitamin C và TFC là cao hơn lần lượt là 2,87 mgGAE/g CK, 204,36 mg/100g CK và 6,04 mgQE/g CK). Sản phẩm bột bưởi có độ ẩm và hoạt độ nước lần lượt là 8,69% và 0,45 thích hợp trong bảo quản và vận chuyển. Kết quả nghiên cứu góp phần nâng cao giá trị sử dụng và kinh tế của quả bưởi lông Cổ Cò tại địa phương.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Akbarmehr, A., Peighambardoust, S. H., Pourhasan, L., & Sarabandi, K. (2024). Spray-drying encapsulation of sunflower pollen peptides using carbohydrate polymers: Physicochemical, antioxidant, structural and morphological analysis. Carbohydrate Polymer Technologies and Applications, 8(November), 100622. https://doi.org/10.1016/j.carpta.2024.100622
Akdeniz, B., Sumnu, G., & Sahin, S. (2017). The effects of maltodextrin and gum Arabic on encapsulation of onion skin phenolic compounds. Chemical Engineering Transactions, 57, 1891–1896. https://doi.org/10.3303/CET1757316
Babu, T. A., Kumar, S., Smith, D. D., & Lakshmipathy, R. (2018). Temperature and Feed Flow RateEffects Properties of Spray Dried Papaya Leaf Powder. International Journal of Chemical Studies, 6(5), 2885–2889.
Baysan, U., Elmas, F., & Koç, M. (2019). The effect of spray drying conditions on physicochemical properties of encapsulated propolis powder. Journal of Food Process Engineering, 42(4), E13-24. http:// dx.doi.org/10.1111/jfpe.13024
Chang, L. S., Tan, Y. L., & Pui, L. P. (2020). Production of spray-dried enzyme-liquefied papaya (carica papaya l.) powder. Brazilian Journal of Food Technology, 23, e2019181. https://doi.org/10.1590/1981-6723.18119
Do, H. T. T., & Nguyen, H. V. H. (2018). Effects of spray-drying temperatures and ratios of gum arabic to microcrystalline cellulose on antioxidant and physical properties of mulberry juice powder. Beverages, 4(4), 101. https://doi.org/10.3390/beverages4040101
Escobar-Avello, D., Avendaño-Godoy, J., Santos, J., Lozano-Castellón, J., Mardones, C., von Baer, D., Luengo, J., Lamuela-Raventós, R. M., Vallverdú-Queralt, A., & Gómez-Gaete, C. (2021). Encapsulation of phenolic compounds from a grape cane pilot-plant extract in hydroxypropyl beta-cyclodextrin and maltodextrin by spray drying. Antioxidants, 10(7), 1–18. https://doi.org/10.3390/antiox10071130
Feguš, U., Žigon, U., Petermann, M., & Knez, Ž. (2015). Effect of drying parameters on physiochemical and sensory properties of fruit powders processed by PGSS-, vacuum- and spray-drying. Acta Chimica Slovenica, 62(2), 479–487. https://doi.org/10.17344/acsi.2014.969
Hedges, A. (2009). Cyclodextrins: Properties and Applications (Starch: Chemistry and Technology, Third Edition). 833-851. https://doi.org/10.1016/B978-0-12-746275-2.00022-7
Hui Ni, Yuan Fan Yang, Feng Chen, Hai Feng Ji, Hu Yang, Wu Ling, and Hui Nong Ca. (2014). Food Sci. Biotechnol. 23(3): 739-746.
Idris, Y. M. A., Ibrahim, Y. A., & Mariod, A. A. (2013). Color of dehydrated tomato: Effects of gum arabic. International Journal of Food Properties, 16(4), 838–851. https://doi.org/10.1080/10942912.2011.565535
Jović, T., Elez Garofulić, I., Čulina, P., Pedisić, S., Dobroslavić, E., Cegledi, E., Dragović-Uzelac, V., & Zorić, Z. (2023). The effect of spray-drying conditions on the characteristics of powdered pistacia lentiscus leaf extract. Processes, 11, 1129. https://doi.org/10.3390/pr11041229
Khanh, N., Linh, T., Thi, P., & Thu, H. (2023). Khảo sát hàm lượng phenolic tổng , flavonoid tổng và tác dụng chống oxy hóa của vỏ quả gấc (Momordica cochinchinensis). Tạp chí Khoa học và Công nghệ Đại học Duy Tân, 02(57) 74-80.
Lee, C. G., Ahmed, M., Jiang, G. H., & Eun, J. B. (2017). Color, bioactive compounds and morphological characteristics of encapsulated Asian pear juice powder during spray drying. Journal of Food Science and Technology, 54(9), 2717–2727. https://doi.org/10.1007/s13197-017-2708-3
Nguyen Phuoc Mai TO, Thanh Toan HA, Van Muoi NGUYEN, Thanh Truc TRAN. (2021). Production of instant pomelo peel powder by spray drying: Optimization of wall material composition to microencapsulate phenolic compounds. Food Sci. Technol, 42, 1-8.
Maskat, M. Y., Lung, C. K., Momeny, E., Khan, M. J., & Siddiqui, S. A. (2014). Temperature and feed rate effects properties of spray dried Hibiscus sabdariffa powder. International Journal of Drug Development and Research, 6(4), 28–34.
Ministry of Industry and Trade. (2020). https://thuongmaibiengioimiennui.gov.vn/san-pham-vung-mien/mien-nam/2020/11/tien-giang-mo-rong-dien-tich-trong-buoi-long-co-co.
Muzaffar, K., Dinkarrao, B. V., & Kumar, P. (2016). Optimization of spray drying conditions for production of quality pomegranate juice powder. Cogent Food & Agriculture, 2: 1127583. https://doi.org/10.1080/23311932.2015.1127583
Patil, V., Chauhan, A. K., & Singh, S. P. (2014). Influence of Spray Drying Technology on the Physical and Nutritional Properties of Guava Powder. International Journal of Current Microbiology and Applied Sciences, 3(9), 1224–1237.
Pradana, A. T., Nawatila, R., Alkindi, F. F., Darmayani, N. P. R., & Susanti, E. D. (2021). The effect of spray-drying temperature on Centella asiatica extract-β cyclodextrin-maltodextrin nanoparticle characteristics and stability. Pharmaciana, 11(3), 394. https://doi.org/10.12928/pharmaciana.v11i3.21534
Cegledi, E.; Garofuli´c, I.E.; Zori´c, Z.; Roje, M.; Dragovi´c-Uzelac, V. (2022). Effect of Spray Drying Encapsulation on Nettle Leaf Extract Powder Properties, Polyphenols and Their Bioavailability. Foods, 11, 2852. 1–21. https://doi.org/10.3390/ foods11182852.
Quek, S. Y., Chok, N. K., & Swedlund, P. (2007). The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing: Process Intensification, 46(5), 386–392. https://doi.org/10.1016/j.cep.2006.06.020
Quoc, L. P. T. (2020). Effect of different carrier agents on physicochemical properties of spray-dried pineapple (Ananas comosus Merr.) powder. Journal of the Korean Chemical Society, 64(5), 259–266. https://doi.org/10.5012/jkcs.2020.64.5.259
Sallam, Y., Fahmy, A., Aly, M., & Abd El-Sallam, E. (2007). Effect of spray drying conditions on the yield and physicochemical properties of roselle (Hibiscus sabdariffa L.). Journal of Food and Dairy Sciences, 32(2), 1229–1243. https://doi.org/10.21608/jfds.2007.198702
Silva F, Torres L, Silva L, Figueiredo R, Garruti D, Araujo T (2018). Cashew gum and maltodextrin particles for green tea (Camellia sinensis var Assamica) extract encapsulation. Food Chem. 245:169–175. https://doi.org/10.1016/j.foodchem.2018.04.028
Philip E. Shaw, James H. Tatum, and Charles W. Wilson. (1984). Improved Flavor of Navel Orange and Grapefruit Juices by Removal of Bitter Components with P-Cyclodextrin Polymer. J. Agric. Food Chem, 32, 832-836.
Shishir, M. R. I., & Chen, W., 2017. Trends of spray drying: a critical review on drying of fruit and vegetable juices. Trends in Food Science & Technology, 65, 49–67.
Singh, A., Swami, S., Panwar, N. R., Kumar, M., Shukla, A. K., Rouphael, Y., Sabatino, L., & Kumar, P. (2022). Development changes in the physicochemical composition and mineral profile of red-fleshed dragon fruit grown under semi-arid conditions. Agronomy, 12(2), 355. https://doi.org/10.3390/agronomy12020355.
Solval, K. M., Sundararajan, S., Alfaro, L., & Sathivel, S. (2012). Development of cantaloupe (Cucumis melo) juice powders using spray drying technology. LWT - Food Science and Technology, 46(1), 287–293. https://doi.org/10.1016/j.lwt.2011.09.017
Suhag, Y., Nayik, G. A., & Nanda, V. (2016). Effect of gum arabic concentration and inlet temperature during spray drying on physical and antioxidant properties of honey powder. Journal of Food Measurement and Characterization, 10(2), 350–356. https://doi.org/10.1007/s11694-016-9313-4
Szejtli, L. Szente. (2005). Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. European Journal of Pharmaceutics and Biopharmaceutics, 61, 115–125.
T.A. Tran, T., & V.H. Nguyen, H. (2018). Effects of Spray-Drying Temperatures and Carriers on Physical and Antioxidant Properties of Lemongrass Leaf Extract Powder. Beverages, 4(4), 84. https://doi.org/10.3390/beverages4040084
Tatasciore, S., Santarelli, V., Neri, L., Di Mattia, C. D., Di Michele, A., Mastrocola, D., & Pittia, P. (2024). Microencapsulation of hop bioactive compounds by spray drying: Role of inlet temperature and wall material. Current Research in Food Science, 8(April), 100769. https://doi.org/10.1016/j.crfs.2024.100769
Tuan Azlan, T. N. N., Hamzah, Y., & Mohd Abd Majid, H. A. (2020). Effect of gum arabic (Acacia senegal) addition on physicochemical properties and sensory acceptability of roselle juice. Food Research, 4(2), 449–458. https://doi.org/10.26656/fr.2017.4(2).293
VisakaAnantawat. (2015). Effects of Spray Drying Conditions on Characteristics, Nutritional Value and Antioxidant Activity of Gac Fruit Aril Powder. Bus. Econ. Res. Online, 4, 2304–1013.
J. Wagner Jr., c. W. Wilson, iii, and p. E. Shaw. (1988). Reduction of grapefruit bitter components in a fluidized beta-cyclodextrin polymer bed. Journal of Food Science, 53(2), 516-518.
Ung Minh Anh Thư và Nguyễn Tấn Hùng. (2025). Khảo sát ảnh huởng của các thông kỹ thuật đến chất lượng bột bưởi (Citrus grandis (L.) Osbeck) sấy phun. Tạp chí Khoa học & Công nghệ Đại học Nguyễn Tất Thành, 8(1), 79-91.
Vietnam Industry and Trade Information Center. (2024). https://thongtincongthuong.vn/phan-tich-tinh-hinh-cung-cau-va-du-bao-mat-hang-trai-cay-co-mui-thang-8-va-8-thang-nam-2024