Đặng Huỳnh Giao * , Cao Đặng Hoàng Ân , Hồ Ngọc Tri Tân , Lương Huỳnh Vủ Thanh Trần Hoàng Ái

* Tác giả liên hệ (dhgiao@ctu.edu.vn)

Abstract

In this study, FeCo-ZIFs with highly crystalline structures were successfully synthesized in a methanol environment using a solvothermal method. The structural characteristics of FeCo-ZIFs were evaluated using advanced analytical techniques, including PXRD, FT-IR, EDX, SEM, TGA, and nitrogen adsorption analysis. FeCo-ZIFs were investigated for their catalytic ability to degrade orange acid 7 (AO7) in the presence of potassium peroxydisulfate. Factors affecting catalytic efficiency, including PDS concentration, catalyst mass, AO7 concentration, and reaction time, were examined. The study demonstrated that FeCo-ZIF could degrade 99.2% of AO7 at a concentration of 30 mg/L within 20 minutes at room temperature, with PDS and FeCo-ZIFs concentrations of 0.1 g/L and 0.2 g/L, respectively. These findings suggest that FeCo-ZIFs are a promising material for removing toxic persistent organic compounds from water, offering a sustainable method to help protect the environment.

Keywords: Acid orange 7, catalyst, dyes, FeCo-ZIFs, potassium peroxydisulfate

Tóm tắt

Trong nghiên cứu này, vật liệu FeCo-ZIFs có cấu trúc tinh thể cao đã được tổng hợp thành công trong methanol bằng phương pháp nhiệt dung môi. Đặc điểm cấu trúc của FeCo-ZIFs được xác định bằng các phương pháp phân tích hiện đại như PXRD, FT-IR, EDX, SEM, TGA và khả năng hấp phụ khí nitơ. FeCo-ZIFs thể hiện khả năng xúc tác phân hủy acid orange 7 (AO7) tốt với sự hiện diện của chất oxy hóa potassium peroxydisulfate trong môi trường nước giả thải. Kết quả cho thấy FeCo-ZIFs có thể xử lý 99,2% AO7 nồng độ 30 mg/L trong vòng 20 phút ở nhiệt độ phòng, với nồng độ PDS và FeCo-ZIFs lần lượt là 0,1 g/L và 0,2 g/L. Điều này chứng tỏ FeCo-ZIFs là vật liệu tiềm năng để loại bỏ các hợp chất hữu cơ khó phân hủy trong môi trường nước, góp phần bảo vệ môi trường.

Từ khóa: Acid orange 7, FeCo-ZIFs, potassium peroxydisulfate, thuốc nhuộm, xúc tác

Article Details

Tài liệu tham khảo

Abuzalat, O., Tantawy, H., Basuni, M., Alkordi, M. H., & Baraka, A. (2022). Designing bimetallic zeolitic imidazolate frameworks (ZIFs) for aqueous catalysis: Co/Zn-ZIF-8 as a cyclic-durable catalyst for hydrogen peroxide oxidative decomposition of organic dyes in water [10.1039/D2RA00218C]. RSC Advances, 12(10), 6025-6036.
https://doi.org/10.1039/D2RA00218C

Ahmad, U., Ullah, S., Rehman, A., Najam, T., Alarfaji, S. S., Jamshaid, M., Parkash Kumar, O., Ullah, S., Shahid, M., Ahmad Shah, S. S., & Altaf Nazir, M. (2024). ZIF-8 Composites for the Removal of Wastewater Pollutants. ChemistrySelect, 9(24), e202401719-e202401719.
https://doi.org/10.1002/SLCT.202401719

Chung, K. T. (2016). Azo dyes and human health: A review. Journal of Environmental Science and Health, Part C, 34(4), 233-261.
https://doi.org/10.1080/10590501.2016.1236602

Corma, A., & Garcia, H. (2008). Crossing the borders between homogeneous and heterogeneous catalysis: Developing recoverable and reusable catalytic systems. Topics in Catalysis, 48(1-4), 8-31.
https://doi.org/10.1007/S11244-008-9056-5/METRICS

Dang, G. H., Le, T. T. A., Tran, H. B., Pham, N. T. B., & Ho, T. N. T. (2023). Investigation into the catalytic activity of Cu/ZIF-67 for Congo Red degradation in the presence of hydrogen peroxide. CTU Journal of Science, 59(Engineering and Technology in the Mekong Delta), 90-98.
https://doi.org/10.22144/ctu.jvn.2023.033

Davies, L. C., Pedro, I. S., Novais, J. M., & Martins-Dias, S. (2006). Aerobic degradation of acid orange 7 in a vertical-flow constructed wetland. Water Research, 40(10), 2055-2063.
https://doi.org/10.1016/J.WATRES.2006.03.010

Elaouni, A., El Ouardi, M., Zbair, M., BaQais, A., Saadi, M., & Ait Ahsaine, H. (2022). ZIF-8 metal organic framework materials as a superb platform for the removal and photocatalytic degradation of organic pollutants: a review. RSC Advances, 12(49), 31801-31817.
https://doi.org/10.1039/D2RA05717D

Gui, L., Peng, J., Li, P., Peng, R., Yu, P., & Luo, Y. (2019). Electrochemical degradation of dye on TiO2 nanotube array constructed anode. Chemosphere, 235, 1189-1196.
https://doi.org/10.1016/J.CHEMOSPHERE.2019.06.170

Guo, L., Shi, W., Liu, Z., Qiu, L., Lin, J., Wang, X., Yu, J., Qiu, K., Li, A., Wu, J., Meng, X., & Wang, Y. (2024). SERS Detection of Trace Carcinogenic Aromatic Amines Based on Amorphous MoO3 Monolayers. Angewandte Chemie (International ed. in English), 63(33).
https://doi.org/10.1002/anie.202407597

Gupta, V. K., Mittal, A., Gajbe, V., & Mittal, J. (2006). Removal and Recovery of the Hazardous Azo Dye Acid Orange 7 through Adsorption over Waste Materials: Bottom Ash and De-Oiled Soya. Industrial & Engineering Chemistry Research, 45(4), 1446-1453.
https://doi.org/10.1021/ie051111f

He, Y., & Bishop, P. L. (1994). Effect of Acid Orange 7 on Nitrification Process. Journal of Environmental Engineering, 120(1), 108-121.
https://doi.org/10.1061/(ASCE)0733-9372(1994)120:1(108)

Hu, Z., Guo, Z., Zhang, Z., Dou, M., & Wang, F. (2018). Bimetal Zeolitic Imidazolite Framework-Derived Iron-, Cobalt- and Nitrogen-Codoped Carbon Nanopolyhedra Electrocatalyst for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 10(15), 12651-12658.
https://doi.org/10.1021/acsami.8b00512

Huang, J., & Zhang, H. (2019). Mn-based catalysts for sulfate radical-based advanced oxidation processes: A review. Environment International, 133, 105141.
https://doi.org/10.1016/j.envint.2019.105141

Kaur, H., Kumar, A., Koner, R. R., & Krishnan, V. (2020). Metal-organic frameworks for photocatalytic degradation of pollutants. Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants: Challenges and Possibilities, 91-126.
https://doi.org/10.1016/B978-0-12-818598-8.00006-7

Kholdeeva, O., & Maksimchuk, N. (2021). Metal-Organic Frameworks in Oxidation Catalysis with Hydrogen Peroxide. Catalysts, 11(2).

Le, T. G., Nguyen, M. K., Nguyen, H. T. D., Tran, V. A., Gwag, J. S., & Tran, T. N. (2023). Highly efficient degradation of reactive black KN-B dye by ultraviolet light responsive ZIF-8 photocatalysts with different morphologies [10.1039/D2RA08312D]. RSC Advances, 13(9), 5908-5924.
https://doi.org/10.1039/D2RA08312D

Li, B., Wang, Y. F., Zhang, L., & Xu, H. Y. (2022). Enhancement strategies for efficient activation of persulfate by heterogeneous cobalt-containing catalysts: A review. Chemosphere, 291(Pt 2), 132954.
https://doi.org/10.1016/j.chemosphere.2021.132954

Luu, D. T., Le, S. T., Dang, T. T., Hoang, T. M., Do, T. X., Dao, U. H., Nguyen, D. A., Nguyen, P. Q., & Le, K. C. (2023). Removing acid orange 7 dye from wastewater by membrane bioreactor (mbr): Effect of aeration mode and hydraulic retention time. TNU Journal of Science and Technology, 228(14), 184-191.
https://doi.org/10.34238/tnu-jst.8863

MacGillivray, L. R., Lukehart, C. M., & Banerjee, D. (2014). Metal-organic framework materials. Wiley.
https://ebookcentral.proquest.com/lib/liverpool/detail.action?docID=1791968

Mezohegyi, G., Kolodkin, A., Fortuny, A., Fabregat, A., Castro, U. I., Font, J., Bengoa, C., & Stuber, F. (2007). Effective Anaerobic Decolorization of Azo Dye Acid Orange 7 in Continuous Upflow Packed-Bed Reactor Using Biological Activated Carbon System. Industrial & Engineering Chemistry Research, 46(21), 6788-6792.
https://doi.org/10.1021/ie061692o

Naraghi, B., Zabihi, F., Biglari, H., Saeidi, M., & Narooie, M. R. (2017). Removal of Acid Orange 7 dye from aqueous solutions by adsorption onto Kenya tea pulps; granulated shape. Electronic physician, 9(5), 4312-4321. https://doi.org/10.19082/4312

Nguyen, D. T., Nguyen, T. P., Hoang, H. T., Le, D. H., & Nguyen, T. L. (2024). Degradation of organic dyes by Peroxymonosulfate activated with Zn/Co-ZIF. Vietnam Journal of Catalysis and Adsorption, 13(3), 17-23. https://doi.org/10.62239/JCA.2024.052

Niu, L., Wei, T., Li, Q., Zhang, G., Xian, G., Long, Z., & Ren, Z. (2020). Ce-based catalysts used in advanced oxidation processes for organic wastewater treatment: A review. Journal of Environmental Sciences, 96, 109-116. https://doi.org/10.1016/j.jes.2020.04.033

Ong, S., Hirata, M., Toorisaka, E., & Hano, T. (2008). Combination of adsorption and biodegradation processes for textile effluent treatment using a granular activated carbon-bioflm confgured packed column system. Journal of Environmental Sciences, 20(8), 952-956.
https://doi.org/10.1016/s1001-0742(08)62192-0

Papić, S., Koprivanac, N., Vujević, D., Kušić, H., Božić, A. L., Dragičević, S. K., & Peternel, I. (2006). Advanced Oxidation Processes in Azo Dye Wastewater Treatment. Water Environment Research, 78(6), 572-579.
https://doi.org/10.2175/106143006x101665

Rayaroth, M. P., Boczkaj, G., Aubry, O., Aravind, U. K., & Aravindakumar, C. T. (2023). Advanced Oxidation Processes for Degradation of Water Pollutants—Ambivalent Impact of Carbonate Species: A Review. Water, 15(8), 1615.
https://doi.org/10.3390/w15081615

Vinodgopal, K., & Peller, J. (2003). Hydroxyl radical-mediated advanced oxidation processes for textile dyes: a comparison of the radiolytic and sonolytic degradation of the monoazo dye Acid Orange 7. Research on Chemical Intermediates, 29(3), 307-316.
https://doi.org/10.1163/156856703764929967

Yang, H., Zhuang, S., Hu, Q., Hu, L., Yang, L., Au, C., & Yi, B. (2018). Competitive reactions of hydroxyl and sulfate radicals with sulfonamides in Fe2+/S2O82− system: reaction kinetics, degradation mechanism and acute toxicity. Chemical Engineering Journal, 339, 32-41.

Zeng, H., Zhao, X., Zhao, F., Park, Y., & Sillanpää, M. (2020). Accelerated Fe3+/Fe2+ cycle using atomic H* on Pd/Al2O3: A novel mechanism for an electrochemical system with particle electrode for iron sludge reduction in the Fe2+/peroxydisulfate oxidation process. Chemical Engineering Journal, 382, 122972.

Zhang, T. (2020). Heterogeneous Catalytic Process for Wastewater Treatment. Advanced Oxidation Processes - Applications, Trends, and Prospects.
https://doi.org/10.5772/INTECHOPEN.90393

Zhou, K., Mousavi, B., Luo, Z., Phatanasri, S., Chaemchuen, S., & Verpoort, F. (2017). Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67 [10.1039/C6TA07860E]. Journal of Materials Chemistry A, 5(3), 952-957.
https://doi.org/10.1039/C6TA07860E

Zhu, L., Meng, L., Shi, J., Li, J., Zhang, X., & Feng, M. (2019). Metal-organic frameworks/carbon-based materials for environmental remediation: A state-of-the-art mini-review. Journal of Environmental Management, 232, 964-977.
https://doi.org/10.1016/J.JENVMAN.2018.12.004