Đánh giá khả năng phân hủy acid orange 7 của vật liệu FeCo-ZIFs với sự hiện diện của chất oxy hóa
Abstract
In this study, FeCo-ZIFs with highly crystalline structures were successfully synthesized in a methanol environment using a solvothermal method. The structural characteristics of FeCo-ZIFs were evaluated using advanced analytical techniques, including PXRD, FT-IR, EDX, SEM, TGA, and nitrogen adsorption analysis. FeCo-ZIFs were investigated for their catalytic ability to degrade orange acid 7 (AO7) in the presence of potassium peroxydisulfate. Factors affecting catalytic efficiency, including PDS concentration, catalyst mass, AO7 concentration, and reaction time, were examined. The study demonstrated that FeCo-ZIF could degrade 99.2% of AO7 at a concentration of 30 mg/L within 20 minutes at room temperature, with PDS and FeCo-ZIFs concentrations of 0.1 g/L and 0.2 g/L, respectively. These findings suggest that FeCo-ZIFs are a promising material for removing toxic persistent organic compounds from water, offering a sustainable method to help protect the environment.
Tóm tắt
Trong nghiên cứu này, vật liệu FeCo-ZIFs có cấu trúc tinh thể cao đã được tổng hợp thành công trong methanol bằng phương pháp nhiệt dung môi. Đặc điểm cấu trúc của FeCo-ZIFs được xác định bằng các phương pháp phân tích hiện đại như PXRD, FT-IR, EDX, SEM, TGA và khả năng hấp phụ khí nitơ. FeCo-ZIFs thể hiện khả năng xúc tác phân hủy acid orange 7 (AO7) tốt với sự hiện diện của chất oxy hóa potassium peroxydisulfate trong môi trường nước giả thải. Kết quả cho thấy FeCo-ZIFs có thể xử lý 99,2% AO7 nồng độ 30 mg/L trong vòng 20 phút ở nhiệt độ phòng, với nồng độ PDS và FeCo-ZIFs lần lượt là 0,1 g/L và 0,2 g/L. Điều này chứng tỏ FeCo-ZIFs là vật liệu tiềm năng để loại bỏ các hợp chất hữu cơ khó phân hủy trong môi trường nước, góp phần bảo vệ môi trường.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Abuzalat, O., Tantawy, H., Basuni, M., Alkordi, M. H., & Baraka, A. (2022). Designing bimetallic zeolitic imidazolate frameworks (ZIFs) for aqueous catalysis: Co/Zn-ZIF-8 as a cyclic-durable catalyst for hydrogen peroxide oxidative decomposition of organic dyes in water [10.1039/D2RA00218C]. RSC Advances, 12(10), 6025-6036.
https://doi.org/10.1039/D2RA00218C
Ahmad, U., Ullah, S., Rehman, A., Najam, T., Alarfaji, S. S., Jamshaid, M., Parkash Kumar, O., Ullah, S., Shahid, M., Ahmad Shah, S. S., & Altaf Nazir, M. (2024). ZIF-8 Composites for the Removal of Wastewater Pollutants. ChemistrySelect, 9(24), e202401719-e202401719.
https://doi.org/10.1002/SLCT.202401719
Chung, K. T. (2016). Azo dyes and human health: A review. Journal of Environmental Science and Health, Part C, 34(4), 233-261.
https://doi.org/10.1080/10590501.2016.1236602
Corma, A., & Garcia, H. (2008). Crossing the borders between homogeneous and heterogeneous catalysis: Developing recoverable and reusable catalytic systems. Topics in Catalysis, 48(1-4), 8-31.
https://doi.org/10.1007/S11244-008-9056-5/METRICS
Dang, G. H., Le, T. T. A., Tran, H. B., Pham, N. T. B., & Ho, T. N. T. (2023). Investigation into the catalytic activity of Cu/ZIF-67 for Congo Red degradation in the presence of hydrogen peroxide. CTU Journal of Science, 59(Engineering and Technology in the Mekong Delta), 90-98.
https://doi.org/10.22144/ctu.jvn.2023.033
Davies, L. C., Pedro, I. S., Novais, J. M., & Martins-Dias, S. (2006). Aerobic degradation of acid orange 7 in a vertical-flow constructed wetland. Water Research, 40(10), 2055-2063.
https://doi.org/10.1016/J.WATRES.2006.03.010
Elaouni, A., El Ouardi, M., Zbair, M., BaQais, A., Saadi, M., & Ait Ahsaine, H. (2022). ZIF-8 metal organic framework materials as a superb platform for the removal and photocatalytic degradation of organic pollutants: a review. RSC Advances, 12(49), 31801-31817.
https://doi.org/10.1039/D2RA05717D
Gui, L., Peng, J., Li, P., Peng, R., Yu, P., & Luo, Y. (2019). Electrochemical degradation of dye on TiO2 nanotube array constructed anode. Chemosphere, 235, 1189-1196.
https://doi.org/10.1016/J.CHEMOSPHERE.2019.06.170
Guo, L., Shi, W., Liu, Z., Qiu, L., Lin, J., Wang, X., Yu, J., Qiu, K., Li, A., Wu, J., Meng, X., & Wang, Y. (2024). SERS Detection of Trace Carcinogenic Aromatic Amines Based on Amorphous MoO3 Monolayers. Angewandte Chemie (International ed. in English), 63(33).
https://doi.org/10.1002/anie.202407597
Gupta, V. K., Mittal, A., Gajbe, V., & Mittal, J. (2006). Removal and Recovery of the Hazardous Azo Dye Acid Orange 7 through Adsorption over Waste Materials: Bottom Ash and De-Oiled Soya. Industrial & Engineering Chemistry Research, 45(4), 1446-1453.
https://doi.org/10.1021/ie051111f
He, Y., & Bishop, P. L. (1994). Effect of Acid Orange 7 on Nitrification Process. Journal of Environmental Engineering, 120(1), 108-121.
https://doi.org/10.1061/(ASCE)0733-9372(1994)120:1(108)
Hu, Z., Guo, Z., Zhang, Z., Dou, M., & Wang, F. (2018). Bimetal Zeolitic Imidazolite Framework-Derived Iron-, Cobalt- and Nitrogen-Codoped Carbon Nanopolyhedra Electrocatalyst for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 10(15), 12651-12658.
https://doi.org/10.1021/acsami.8b00512
Huang, J., & Zhang, H. (2019). Mn-based catalysts for sulfate radical-based advanced oxidation processes: A review. Environment International, 133, 105141.
https://doi.org/10.1016/j.envint.2019.105141
Kaur, H., Kumar, A., Koner, R. R., & Krishnan, V. (2020). Metal-organic frameworks for photocatalytic degradation of pollutants. Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants: Challenges and Possibilities, 91-126.
https://doi.org/10.1016/B978-0-12-818598-8.00006-7
Kholdeeva, O., & Maksimchuk, N. (2021). Metal-Organic Frameworks in Oxidation Catalysis with Hydrogen Peroxide. Catalysts, 11(2).
Le, T. G., Nguyen, M. K., Nguyen, H. T. D., Tran, V. A., Gwag, J. S., & Tran, T. N. (2023). Highly efficient degradation of reactive black KN-B dye by ultraviolet light responsive ZIF-8 photocatalysts with different morphologies [10.1039/D2RA08312D]. RSC Advances, 13(9), 5908-5924.
https://doi.org/10.1039/D2RA08312D
Li, B., Wang, Y. F., Zhang, L., & Xu, H. Y. (2022). Enhancement strategies for efficient activation of persulfate by heterogeneous cobalt-containing catalysts: A review. Chemosphere, 291(Pt 2), 132954.
https://doi.org/10.1016/j.chemosphere.2021.132954
Luu, D. T., Le, S. T., Dang, T. T., Hoang, T. M., Do, T. X., Dao, U. H., Nguyen, D. A., Nguyen, P. Q., & Le, K. C. (2023). Removing acid orange 7 dye from wastewater by membrane bioreactor (mbr): Effect of aeration mode and hydraulic retention time. TNU Journal of Science and Technology, 228(14), 184-191.
https://doi.org/10.34238/tnu-jst.8863
MacGillivray, L. R., Lukehart, C. M., & Banerjee, D. (2014). Metal-organic framework materials. Wiley.
https://ebookcentral.proquest.com/lib/liverpool/detail.action?docID=1791968
Mezohegyi, G., Kolodkin, A., Fortuny, A., Fabregat, A., Castro, U. I., Font, J., Bengoa, C., & Stuber, F. (2007). Effective Anaerobic Decolorization of Azo Dye Acid Orange 7 in Continuous Upflow Packed-Bed Reactor Using Biological Activated Carbon System. Industrial & Engineering Chemistry Research, 46(21), 6788-6792.
https://doi.org/10.1021/ie061692o
Naraghi, B., Zabihi, F., Biglari, H., Saeidi, M., & Narooie, M. R. (2017). Removal of Acid Orange 7 dye from aqueous solutions by adsorption onto Kenya tea pulps; granulated shape. Electronic physician, 9(5), 4312-4321. https://doi.org/10.19082/4312
Nguyen, D. T., Nguyen, T. P., Hoang, H. T., Le, D. H., & Nguyen, T. L. (2024). Degradation of organic dyes by Peroxymonosulfate activated with Zn/Co-ZIF. Vietnam Journal of Catalysis and Adsorption, 13(3), 17-23. https://doi.org/10.62239/JCA.2024.052
Niu, L., Wei, T., Li, Q., Zhang, G., Xian, G., Long, Z., & Ren, Z. (2020). Ce-based catalysts used in advanced oxidation processes for organic wastewater treatment: A review. Journal of Environmental Sciences, 96, 109-116. https://doi.org/10.1016/j.jes.2020.04.033
Ong, S., Hirata, M., Toorisaka, E., & Hano, T. (2008). Combination of adsorption and biodegradation processes for textile effluent treatment using a granular activated carbon-bioflm confgured packed column system. Journal of Environmental Sciences, 20(8), 952-956.
https://doi.org/10.1016/s1001-0742(08)62192-0
Papić, S., Koprivanac, N., Vujević, D., Kušić, H., Božić, A. L., Dragičević, S. K., & Peternel, I. (2006). Advanced Oxidation Processes in Azo Dye Wastewater Treatment. Water Environment Research, 78(6), 572-579.
https://doi.org/10.2175/106143006x101665
Rayaroth, M. P., Boczkaj, G., Aubry, O., Aravind, U. K., & Aravindakumar, C. T. (2023). Advanced Oxidation Processes for Degradation of Water Pollutants—Ambivalent Impact of Carbonate Species: A Review. Water, 15(8), 1615.
https://doi.org/10.3390/w15081615
Vinodgopal, K., & Peller, J. (2003). Hydroxyl radical-mediated advanced oxidation processes for textile dyes: a comparison of the radiolytic and sonolytic degradation of the monoazo dye Acid Orange 7. Research on Chemical Intermediates, 29(3), 307-316.
https://doi.org/10.1163/156856703764929967
Yang, H., Zhuang, S., Hu, Q., Hu, L., Yang, L., Au, C., & Yi, B. (2018). Competitive reactions of hydroxyl and sulfate radicals with sulfonamides in Fe2+/S2O82− system: reaction kinetics, degradation mechanism and acute toxicity. Chemical Engineering Journal, 339, 32-41.
Zeng, H., Zhao, X., Zhao, F., Park, Y., & Sillanpää, M. (2020). Accelerated Fe3+/Fe2+ cycle using atomic H* on Pd/Al2O3: A novel mechanism for an electrochemical system with particle electrode for iron sludge reduction in the Fe2+/peroxydisulfate oxidation process. Chemical Engineering Journal, 382, 122972.
Zhang, T. (2020). Heterogeneous Catalytic Process for Wastewater Treatment. Advanced Oxidation Processes - Applications, Trends, and Prospects.
https://doi.org/10.5772/INTECHOPEN.90393
Zhou, K., Mousavi, B., Luo, Z., Phatanasri, S., Chaemchuen, S., & Verpoort, F. (2017). Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67 [10.1039/C6TA07860E]. Journal of Materials Chemistry A, 5(3), 952-957.
https://doi.org/10.1039/C6TA07860E
Zhu, L., Meng, L., Shi, J., Li, J., Zhang, X., & Feng, M. (2019). Metal-organic frameworks/carbon-based materials for environmental remediation: A state-of-the-art mini-review. Journal of Environmental Management, 232, 964-977.
https://doi.org/10.1016/J.JENVMAN.2018.12.004