Sản xuất sinh khối nấm men Saccharomyces Cerevisiae từ dịch thủy phân rong Ulva Lactuca và thử nghiệm dùng trong nuôi lưu hàu thái bình dương thương phẩm
Abstract
Ulva lactuca seaweed, harvested in Ninh Thuan, Vietnam, underwent heat treatment at 150°C for 10 minutes, followed by enzymatic hydrolysis using Celluclast® 1.5l Novozyme at 50°C for 36 hours, resulting in a release of reducing sugars equivalent to 19.76 ± 0.27 (%) of the seaweed powder's dry weight. Utilizing the resultant seaweed hydrolysate, a yeast biomass production medium was supplemented with 9% (w/v) molasses (70oBrix) and adjusted to pH 6. A 10% (v/w) inoculum of Saccharomyces cerevisiae strain at a density of 1.2´106 cfu/ml was then introduced to the medium and fermented at room temperature for 72 hours with agitation at 120 rpm, yielding the highest yeast growth rate and wet yeast biomass production of 16.61 ± 0.95 (g/L). In a depuration test spanning 4 days, adult oysters cultured with yeast biomass derived from Ulva lactuca seaweed hydrolysate fermentation exhibited a remarkable survival rate of 93.43 ± 1.46 (%). They achieved the highest meat weight ratio of 26.45 ± 0.42 (%). This underscores the potential of Saccharomyces cerevisiae biomass cultured in Ulva lactuca hydrolysate as a viable food source for commercial Pacific oysters during the depuration process.
Tóm tắt
Rong lục Ulva lactuca thu nhận tại Ninh Thuận, Việt Nam qua xử lý nhiệt 150oC trong 10 phút và thủy phân bằng enzyme Celluclast® 1.5l Novozyme ở 50oC trong 36 giờ đã giải phóng được lượng đường khử là 19,76 ± 0,27% khối lượng khô của bột rong. Với cơ chất ban đầu là dịch rong thủy phân, môi trường sản xuất sinh khối nấm men được nghiên cứu bổ sung 9% (w/V) rỉ đường 70oBrix, điều chỉnh về pH 6. Cấy 10% (v/w) giống nấm men Saccharomyces cerevisiae mật độ 1,2x106cfu/ml vào môi trường và lên men ở nhiệt độ phòng trong 72h, tốc độ khuấy 120 vòng/ phút cho tốc độ sinh trưởng nấm men lớn nhất, lượng sinh khối nấm men ướt thu được cao nhất là 16,61±0,95 g/L. Thử nghiệm nuôi hàu trưởng thành 4 ngày bằng sinh khối nấm men trong rong Ulva lectuca thủy phân lên men cho tỷ lệ sống 93,43±1,46% và có tỷ lệ khối lượng thịt cao nhất, 26,45±0,42%. Như vậy, nấm men Saccharomyces cerevisiae trong rong lục Ulva lactuca lên men thực sự là nguồn thức ăn tiềm năng cho đối tượng hàu trưởng thành.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Agboola, J. O., Øverland, M., Skrede, A., & Hansen, J. Ø. (2020). Yeast as major protein-rich ingredient in aquafeeds: A review of the implications for aquaculture production. Reviews in Aquaculture, 13(2), 949–970. https://doi.org/10.1111/raq.12507
Alberto, P. R., Gabriela, M. A., & Regina, E. G. (2020) Seaweed single cell detritus effects on the digestive enzymes activity and microbiota of the oyster Crassostrea gigas. Journal of Applied Phycology, 32, 3481–3493. https://doi.org/10.1007/s10811-020-02167-4
Aslamyah, S., Karim, M. Y., & Badraeni. (2017). Fermentation of seaweed flour with various fermenters to improve the quality of fish feed ingredients. Journal Akuakultur Indonesia, 16(1), 8-14.
https://doi.org/10.19027/jai.16.1.8-14
Bikker, P., Krimpen, V. M. M., Wikselaar, V. P., Houweling-Tan, B., Scaccia, N., Hal, V. J. W., Huijgen, W. J., Cone, J. W., & López-Contreras, A. M. (2016). Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. Journal of Applied Phycology, 28(6), 3511-3525. https://doi.org/10.1007/s10811-016-0842-3
Cruz-Suárez, L. E., León, A., Peña-Rodríguez, A., Rodríguez-Peña, G., Moll, B., & Ricque-Marie, D. (2010). Shrimp/Ulva co-culture: A sustainable alternative to diminish the need for artificial feed and improve shrimp quality. Aquaculture, 301(1-4), 64-68. https://doi.org/10.1016/j.aquaculture.2010.01.021
Đàm, Đ. T. (2021). Đa dạng sinh học và nguồn lợi rong biển Việt Nam. Khoa học Công nghệ Việt Nam, 4A, 14-17.
Dunuweera, A. N., Nikagolla, D. N., & Ranganathan, K. (2021). Fruit Waste Substrates to Produce Single-Cell Proteins as Alternative Human Food Supplements and Animal Feeds Using Baker's Yeast (Saccharomyces cerevisiae). Journal of Food Quality, 2021. https://doi.org/10.1155/2021/9932762
Marinho, G., Nunes, C., Sousa-Pinto, I., Pereira, R., Rema, P., & Valente, L. P. (2013). The IMTA-cultivated Chlorophyta Ulva spp. as a sustainable ingredient in Nile tilapia (Oreochromis niloticus) diets. Journal of Applied Phycology, 25(5), 1359-1367.
https://doi.org/10.1007/s10811-012-9965-3
Milala, M., Yakubu, M., Burah, B., Laminu, H., & Bashir, H. (2018). Production and optimization of single cell protein from orange peels by Saccharomyces cerevisiae. Journal of Bioscience and Biotechnology Discovery, 3, 99-104.https://doi.org/10.31248/JBBD2018.081
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030
Morais, T., Inácio, A., Coutinho, T., Ministro, M., Cotas, J., Pereira, L., & Bahcevandziev, K. (2020). Seaweed Potential in the Animal Feed: A Review. Journal of Marine Science and Engineering, 8(8), 559. https://doi.org/10.3390/jmse8080559
Trivedi, N., Gupta, V., Reddy, C. R. K., & Bhavanath J. (2013). Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Bioresource Technology, Volume 150, Pages 106-112, ISSN 0960-8524.
https://doi.org/10.1016/j.biortech.2013.09.103
Omont, A., Py, C., Gamboa-Delgado, J., Nolasco-Soria, H., Spanopoulos-Zarco, M., & Peña-Rodríguez, A. (2021). Nutritional contribution of seaweed Ulva lactuca single-cell detritus and microalgae Chaetoceros calcitrans to the growth of the Pacific oyster Crassostrea gigas. Aquaculture, 541, 736835. ISSN 0044-8486. https://doi.org/10.1016/j.aquaculture.2021.736835
Pappou, S., Dardavila, M. M., Savvidou, M. G., Louli, V., Magoulas, K., & Voutsas, E. (2022). Extraction of bioactive compounds from Ulva lactuca. Applied Sciences, 12(4), 2117. https://doi.org/10.3390/app12042117
Peña, A., Sánchez, N. S., Álvarez, H., Calahorra, M., & Ramírezand, J. (2015). Effects of high medium pH on growth, metabolism and transport in Saccharomyces cerevisiae. FEMS Yeast Research, 15(2), fou005. https://doi.org/10.1093/femsyr/fou005
Sokchea, H., Hang T. P., Dinh, P. L., Duc, N. L, & Tu, H. T. T. (2018) Effect of Time, Urea and Molasses Concentration on Saccharomyces Cerevisiae Biomass Production. J. Vet. Ani. Res. 1, 104.
Suantika, G., Situmorang, M. L., Saputra, F. I., Alviredieta U., Aditiawati P., & Putri, S. P. (2021). The Effect of Feed Supplementation with Fermented Red Seaweed (Kappaphycus alvarezii) on Growth and Survival of White Shrimp (Litopenaeus vannamei) Post-Larvae Culture. Journal of Biosciences, 28(4), 286-292. https://doi.org/10.4308/hjb.28.4.286-392
Sudhakar, M. P., Merlyn, R., Arunkumar, K., & Perumal, K. (2016). Characterization, pretreatment and saccharification of spent seaweed biomass for bioethanol production using baker’s yeast. Biomass and Bioenergy, 90, 148–154. https://doi.org/10.1016/j.biombioe.2016.03.031
Valle, D. J. C., Bonadero, M. C., & Fernández-Gimenez, A. V., (2023). Saccharomyces cerevisiae as probiotic, prebiotic, synbiotic, postbiotics and parabiotics in aquaculture: An overview. Aquaculture, 569, 739342. https://doi.org/10.1016/j.aquaculture.2023.739342
Yanagisawa, M., Nakamura, K., Ariga, O., & Nakasaki, K. (2011). Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochemistry, 46(11), 2111–2116. https://doi.org/10.1016/j.procbio.2011.08.001
Zakaria, N. Z., Zhen, A. W., Mohd Hassan, S. A., & Zakaria, Z. (2020). Optimization on fermentation of seaweed (Gracilaria sp.) as feedstock for bioethanol production by Saccharomyces cerevisiae. IOP Conference Series: Materials Science and Engineering, 932.
https://doi.org/10.1088/1757-899X/932/1/012020