Tổng quan ứng dụng liên kết Canxi-Alginate trong màng composite và vật liệu giả da Bioleather
Abstract
Calcium alginate gel has been widely used in composite films with many versatile applications discovered by many scientists. Besides, the trend of using environmentally friendly leather materials has developed globally. This paper reviews information about alginate-based films and eco-friendly bio-leather, which have been synthesized based on the ion-gel linking of Calcium Alginate in aqueous solution.
Tóm tắt
Gel của Ca-alginate trong nước được ứng dụng nhiều trong vật liệu màng composite với nhiều ứng dụng linh hoạt đã được nhiều nhà khoa học phát hiện ra. Bên cạnh đó, xu hướng sử dụng vật liệu da thân thiện môi trường đã phát triển rất nhiều ở các nước trên thế giới. Bài báo này nhằm cung cấp những thông tin về vật liệu màng composite và vật liệu giả da Bioleather dựa trên liên kết ion gel của Ca- Alginate trong môi trường nước.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Bierhalz, A. C., da Silva, M. A., Braga, M. E., Sousa, H. J., & Kieckbusch, T. G. (2014). Effect of calcium and/or barium crosslinking on the physical and antimicrobial properties of natamycin-loaded alginate films. LWT-Food Science and Technology, 57(2), 494-501. https://doi.org/10.1016/j.lwt.2014.02.021
Tổng cục Thống kê. (2020). Báo cáo tại hội nghị trực tuyến về hiện trạng và giải pháp xử lý phụ phẩm nông, lâm, thủy sản ở Việt Nam.
Chen, H., Ouyang, W., Lawuyi, B., & Prakash, S. (2006). Genipin cross-linked alginate-chitosan microcapsules: membrane characterization and optimization of cross-linking reaction. Biomacromolecules, 7(7), 2091-2098. https://doi.org/10.1021/bm050862y
Crow, B. B., & Nelson, K. D. (2006). Release of bovine serum albumin from a hydrogel‐cored biodegradable polymer fiber. Biopolymers, 81(6), 419-427. https://doi.org/10.1002/bip.20442
Davydova, G. A., Chaikov, L. L., Melnik, N. N., Gainutdinov, R. V., Selezneva, I. I., Perevedentseva, E. V., Mahamadiev, M. T., Proskurin, V. A., Yakovsky, D. S., Mohan, A. G., & Rau, J. V. (2024). Polysaccharide Composite Alginate–Pectin Hydrogels as a Basis for Developing Wound Healing Materials. Polymers, 16(2), 287. https://doi.org/10.3390/polym16020287
Fang, Y., Al-Assaf, S., Phillips, G. O., Nishinari, K., Funami, T., & Williams, P. A. (2008). Binding behavior of calcium to polyuronates: Comparison of pectin with alginate. Carbohydrate Polymers, 72(2), 334-341. https://doi.org/10.1016/j.carbpol.2007.08.021
Fazilah, A., Maizura, M., Abd Karim, A., Bhupinder, K., & Rajeev, B. (2011). Physical and mechanical properties of sago starch-alginate films incorporated with calcium chloride. International Food Research Journal, 18(3), 1027-1033.
Fernandes, M., Souto, A. P., Dourado, F., & Gama, M. (2021). Application of bacterial cellulose in the textile and shoe industry: development of biocomposites. Polysaccharides, 2(3), 566-581. https://doi.org/10.3390/polysaccharides2030034
George, M., & Abraham, T. E. (2006). Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. Journal of controlled release, 114(1), 1-14. https://doi.org/10.1016/j.jconrel.2006.04.017
Giz, A. S., Berberoglu, M., Bener, S., Aydelik-Ayazoglu, S., Bayraktar, H., Alaca, B. E., & Catalgil-Giz, H. (2020). A detailed investigation of the effect of calcium crosslinking and glycerol plasticizing on the physical properties of alginate films. International Journal of Biological Macromolecules, 148, 49-55. https://doi.org/10.1016/j.ijbiomac.2020.01.103
Günter, E. A., Popeyko, O. V., Belozerov, V. S., Martinson, E. A., & Litvinets, S. G. (2020). Physicochemical and swelling properties of composite gel microparticles based on alginate and callus cultures pectins with low and high degrees of methyl esterification. International Journal of Biological Macromolecules, 164, 863-870. https://doi.org/10.1016/j.ijbiomac.2020.07.189
Hoàng, N. X., Nguyên, T. T., Ngân, P. T. T., Nghiệp, T. D., Nhân, N. H., & Long, T. T. (2023). Sản xuất phân hữu cơ từ rác thải sinh hoạt. Tạp chí Khoa học Đại học cần Thơ, 59(4), 8-19.
https://doi.org/10.22144/ctujos.2023.173
Hua, S., Marks, E., Schneider, J. J., & Keely, S. (2015). Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomedicine: nanotechnology, biology and medicine, 11(5), 1117-1132. https://doi.org/10.1016/j.nano.2015.02.018
Karoyo, A. H., & Wilson, L. D. (2021). A review on the design and hydration properties of natural polymer-based hydrogels. Materials, 14(5), 1095.
https://doi.org/10.3390/ma14051095
Kim, H., Song, J. E., & Kim, H. R. (2021). Comparative study on the physical entrapment of soy and mushroom proteins on the durability of bacterial cellulose bio‐leather. Cellulose, 28, 3183-3200.
https://doi.org/10.1007/s10570-021-03705-0
Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in polymer science, 37(1), 106-126. https://doi.org/10.1016/j.progpolymsci.2011.06.003
Lee, K. Y., & Yuk, S. H. (2007). Polymeric protein delivery systems. Progress polymer science, 32(7), 669-697. https://doi.org/10.1016/j.progpolymsci.2007.04.001
Mousavi, S. N., Daneshvar, H., Dorraji, M. S. S., Ghasempour, Z., Panahi-Azar, V., & Ehsani, A. (2021). Starch/alginate/Cu-g-C3N4 nanocomposite film for food packaging. Materials Chemistry and Physics, 267, 124583. https://doi.org/10.1016/j.matchemphys.2021.124583
Thành, N. V., Bội, V. N., Vân, T. T. T., Nguyên, B. V., & Thuất, N. Đ. (2017). Tối ưu hóa quá trình nấu chiết alginate từ bã rong nâu Turbinaria ornata (Turner) J. AGARDH. Tạp chí Khoa học Đại học cần Thơ, 49, 116-121.
https://doi.org/10.22144/ctu.jvn.2017.029
Qin, Y. (2008). Alginate fibres: an overview of the production processes and applications in wound management. Polymer International, 57(2), 171-80. https://doi.org/10.1002/pi.2296
Ramdhan, T., Ching, S. H., Prakash, S., & Bhandari, B. (2020). Physical and mechanical properties of alginate based composite gels. Trends in Food Science & Technology, 106, 150-159. https://doi.org/10.1016/j.tifs.2020.10.002
Gaddam, S. K., Pothu, R., & Boddula, R. (2020). Graphitic carbon nitride (g‐C3N4) reinforced polymer nanocomposite systems—a review. Polymer Composites, 41(2), 430-442.
Tewari, S., Reshamwala, S. M., Bhatt, L., & Kale, R. D. (2023). Vegan leather: a sustainable reality or a marketing gimmick? Environmental Science and Pollution Research, 1-15. https://doi.org/10.1007/s11356-023-31491-8
Truong, V., Nguyen, P. T., & Truong, V. T. (2021). The prediction model of nozzle height in liquid jet-drop method to produce Ca-alginate beads under microencapsulation process. Journal of Food Process Engineering, 44(4), e13663. https://doi.org/10.1111/jfpe.13663
Xu, Y.J., Qu, L.Y., Liu, Y., & Zhu, P., (2021). An overview of alginates as flame-retardant materials: Pyrolysis behaviors, flame retardancy, and applications. Carbohydrate polymers, 260, 117827. https://doi.org/10.1016/j.carbpol.2021.117827
Whistler, R. (Ed.). (2012). Industrial gums: polysaccharides and their derivatives. Elsevier.
Wang, B., Wan, Y., Zheng, Y., Lee, X., Liu, T., Yu, Z., & Gao, B. (2019). Alginate-based composites for environmental applications: a critical review. Critical reviews in environmental science and technology, 49(4), 318-356. https://doi.org/10.1080/10643389.2018.1547621
Zhang, X., Wang, X., Fan, W., Liu, Y., Wang, Q., & Weng, L. (2022). Fabrication, property and application of calcium alginate fiber: a review. Polymers, 14(15), 3227. https://doi.org/10.3390/polym14153227
Zhang, C., Grossier, R., Candoni, N., & Veesler, S. (2021). Preparation of alginate hydrogel microparticles by gelation introducing cross-linkers using droplet-based microfluidics: a review of methods. Biomaterials Research, 25(1), 25-41.
https://doi.org/10.1186/s40824-021-00243-5