Nghiên cứu đặc tính điện tử và phổ hấp thụ của chấm lượng tử penta-graphene
Abstract
In this study, electronic and optical properties of the penta-graphene quantum dots with different sizes or doping by boron (B), nitrogen (N), boron – nitrogen (BN) at various positions are systematically investigated by using the density functional theory in combination with the non-equilibrium Green’s function formalism. Specifically, band structure, density of states, and absorption spectra of all samples are studied in detail. The result shows that electronic and optical properties of the penta-graphene quantum dots not only depend on quantum dot sizes but also dopants. The diversity of electronic and optical properties of the studied samples demonstrates the penta-graphene quantum dots as an excellent candidate for developing electro-optic device.
Tóm tắt
Trong nghiên cứu này, đặc tính điện tử và tính chất quang của chấm lượng tử penta-graphene với kích thước khác khau hoặc được pha tạp boron (B), nitrogen (N) và đồng pha tạp boron - nitrogen (BN) tại các vị trí khác nhau được khảo sát một cách có hệ thống bằng cách sử dụng lý thuyết phiếm hàm mật độ và hàm Green không cân bằng. Cụ thể, cấu trúc vùng, mật độ trạng thái, phổ hấp thụ của tất cả mẫu được nghiên cứu một cách chi tiết. Kết quả cho thấy đặc tính điện tử và tính chất quang của chấm lượng tử penta-graphene không những phụ thuộc vào kích thước mà còn phụ thuộc vào loại nguyên tố và vị trí pha tạp. Sự đa dạng về đặc tính điện tử và tính chất quang của các mẫu nghiên cứu cho thấy chấm lượng tử penta-graphene là một ứng viên sáng giá cho sự phát triển các thiết bị quang điện tử.
Article Details
Tài liệu tham khảo
Abdelati, M. A., Fadlallah, M. M., Gamal, Y. E. D., & Maarouf, A. A. (2021). Pristine and holey graphene quantum dots: Optical properties using time independent and dependent density functional theory. Physica E: Low-dimensional Systems and Nanostructures, 128, 114602. https://doi.org/10.1016/j.physe.2020.114602
Banhart, F., Kotakoski, J., & Krasheninnikov, A. V. (2011). Structural defects in graphene. ACS Nano, 5(1), 26-41. https://doi.org/10.1021/nn102598m
Dos Santos, R. M., de Sousa, L. E., Galvão, D. S., & Ribeiro, L. A. (2020). Tuning penta-Graphene electronic properties through engineered Line Defects. Scientific Reports, 10(1), 1-8. https://doi.org/10.1038/s41598-020-64791-x
Hosseini, M., Khabbaz, H., Dezfoli, A. S., Ganjali, M. R., & Dadmehr, M. (2015). Selective recognition of Glutamate based on fluorescence enhancement of graphene quantum dots. Spectrochimica Acta Part A: Molecular and Biomolecular, 136, 1962-1966. https://doi.org/10.1016/j.saa.2014.10.117
Kang, D., Zhang, C., & Li, H. (2019). Spin transport in zigzag graphene nanoribbon with a flower defect. Journal of Superconductivity and Novel Magnetism, 32(12), 3927-3931. https://doi.org/10.1007/s10948-019-05180-y
Kaykılarlı, C., Uzunsoy, D., Parmak, E. D. Ş., Fellah, M. F., & Çakır, Ö. Ç. (2020). Boron and nitrogen doping in graphene: an experimental and density functional theory (DFT) study. Nano Express, 1(1), 010027. https://doi.org/10.1088/2632-959X/ab89e9
Kermani, H. A., Hosseini, M., Dadmehr, M., Hosseinkhani, S., & Ganjali, M. R. (2017). DNA methyltransferase activity detection based on graphene quantum dots using fluorescence and fluorescence anisotropy. Sensors and Actuators B Chemical, 241, 217-223. https://doi.org/10.1016/j.snb.2016.10.078
Kuklin, A. V., Ågren, H., & Avramov, P. V. (2020). Structural stability of single-layer PdSe2 with pentagonal puckered morphology and its nanotubes. Physical Chemistry Chemical Physics, 22(16), 8289-8295. https://doi.org/10.1039/D0CP00979B
Kumar, V., Dey, A., Thomas, S., Zaeem, M. A., & Roy, D. R. (2021). Hydrogen-induced tunable electronic and optical properties of a two-dimensional penta-Pt2N4 monolayer. Physical Chemistry Chemical Physics, 23(17), 10409-10417. https://doi.org/10.1039/D1CP00681A
Liu, H., Qin, G., Lin, Y., & Hu, M. (2016). Disparate strain dependent thermal conductivity of two-dimensional penta-structures. Nano Letters, 16(6), 3831-3842. https://doi.org/10.1021/acs.nanolett.6b01311
Mehrzad-Samarin, M., Faridbod, F., Dezfuli, A. S., & Ganjali, M. R. (2017). A novel metronidazole fluorescent nanosensor based on graphene quantum dots embedded silica molecularly imprinted polymer. Biosensors and Bioelectronics, 92, 618-623. https://doi.org/10.1016/j.bios.2016.10.047
Monshi, M. M., Aghaei, S. M., & Calizo, I. (2018). Band gap opening and optical absorption enhancement in graphene using ZnO nanocluster. Physics Letters A, 382(17), 1171-1175. https://doi.org/10.1016/j.physleta.2018.03.001
Myung, S., Yin, P. T., Kim, C., Park, J., Solanki, A., Reyes, P. I., ... & Lee, K. B. (2012). Label‐Free Polypeptide‐Based Enzyme Detection Using a Graphene‐Nanoparticle Hybrid Sensor. Advanced Materials, 24(45), 6081-6087. https://doi.org/10.1002/adma.201202961
Narin, P. O. L. A. T., Abbas, J. A., Atmaca, G., Kutlu, E., Lisesivdin, S. B., & Ozbay, E. (2019). Ab initio study of electronic properties of armchair graphene nanoribbons passivated with heavy metal elements. Solid State Communications, 296, 8-11. https://doi.org/10.1016/j.ssc.2019.04.005
Novoselov, K. S. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666-669. https://doi.org/10.1126/science.1102896
Novosolov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonov, S. V., & Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197-200. https://doi.org/10.1038/nature04233
Rui, C., Shao, C., Liu, J., Chen, A., Zhu, K., & Shao, Q. (2021). Transport properties of B/P doped graphene nanoribbon field-effect transistor. Materials Science in Semiconductor Processing, 130, 105826. https://doi.org/10.1016/j.mssp.2021.105826
Salehnia, F., Faridbod, F., Dezfuli, A.S., Ganjali, M.R., & Norouzi, P. (2017). Cerium (III) ion sensing based on graphene quantum dots fluorescent Turn-Off. Journal of Fluorescence, 27(1), 331-338. https://doi.org/10.1007/s10895-016-1962-5
Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., & Novoselov, K. S. (2007). Detection of individual gas molecules adsorbed on graphene. Nature Materials, 6(9), 652-655. https://doi.org/10.1038/nmat1967
Shahrokhi, M. (2017). Tuning the band gap and optical spectra of monolayer penta-graphene under in-plane biaxial strains. Optik, 136, 205-214. https://doi.org/10.1016/j.ijleo.2017.02.033
Shunhong, Z., Jian, Z., Qian, W., Xiaoshuang, C., Yoshiyuki, K., & Puru, J. (2015). Penta-graphene: A new carbon allotrope. Radioelectronics. Nano systems. Information Technologies, 7(2), 191-207. https://doi.org/10.17725/rensit.2015.07.191
Singh, D., Gupta, S. K., Sonvane, Y., & Lukačević, I. (2016). Antimonene: a monolayer material for ultraviolet optical nanodevices. Journal of Materials Chemistry C, 4(26), 6386-6390. https://doi.org/10.1039/C6TC01913G
Sohal, N., Maity, B., & Basu, S. (2021). Recent advances in heteroatom-doped graphene quantum dots for sensing applications. RSC Advances, 11(41), 25586-25615. https://doi.org/10.1039/D1RA04248C
Tien, N. T., Thao, P. T. B., Phuc, V. T., & Ahuja, R. (2019). Electronic and transport features of sawtooth penta-graphene nanoribbons via substitutional doping. Physica E: Low-dimensional Systems and Nanostructures, 114, 113572. https://doi.org/10.1016/j.physe.2019.113572
Tien, N. T., Thao, P. T. B., Phuc, V. T., & Ahuja, R. (2020). Influence of edge termination on the electronic and transport properties of sawtooth penta-graphene nanoribbons. Journal of Physics and Chemistry of Solids, 146, 109528. https://doi.org/10.1016/j.jpcs.2020.109528
Weerasinghe, A., Ramasubramaniam, A., & Maroudas, D. (2018). Electronic structure of electron-irradiated graphene and effects of hydrogen passivation. Materials Research Express, 5(11), 115603. https://doi.org/10.1088/2053-1591/aaddce
Yuan, P. F., Zhang, Z. H., Fan, Z. Q., & Qiu, M. (2017). Electronic structure and magnetic properties of penta-graphene nanoribbons. Physical Chemistry Chemical Physics, 19(14), 9528-9536. https://doi.org/10.1039/C7CP00029D