Ảnh hưởng của pH, khối lượng, thời gian và nồng độ nitrate lên khả năng hấp phụ nitrate của than tre trong nước thải biogas
Abstract
The main purpose of this research is an evaluation of the nitratee removal efficiency from biogas solution by using bamboo biochar. The characteristics of the bamboo biochar were determined by Brunauer-Emmett-Teller (BET) test, and Scanning electron microscopy (SEM). The experiment was conducted in the lab and designed completely randomized with five replications. The results demonstrated that the optimum conditions for the effective adsorption of nitratee ion onto bamboo biochar were found to be pH 4, biochar dosage of 1 g L-1, and retention time of 15 min. The experimental data were fitted to different adsorption isotherms models (Langmuir, Freundlich models). The maximum adsorption capacity of bamboo biochar for nitratee removal was found to be 8.1 mg g−1.
Tóm tắt
Mục tiêu của nghiên cứu là đánh giá khả năng hấp phụ nitrate trong nước thải biogas bằng than sinh học tre. Đặc điểm của than tre được xác định bằng cách đo diện tích bề mặt riêng (BET) và chụp ảnh SEM. Thí nghiệm được tiến hành trong phòng thí nghiệm và được bố trí hoàn toàn ngẫu nhiên với 5 lần lặp lại. Kết quả nghiên cứu cho thấy quá trình hấp phụ nitrate đạt tối ưu khi pH dung dịch bằng 4, với khối lượng than là 1 g, thời gian hấp phụ đạt cân bằng sau 15 phút. Dữ liệu thí nghiệm phù hợp với các mô hình hấp phụ đẳng nhiệt khác nhau (mô hình Langmuir, mô hình Freundlich). Dung lượng nitrate hấp phụ cực đại của than tre đạt 8,1 mg/g.
Article Details
Tài liệu tham khảo
Ahmadvand, M., Jaber, S., Seyyed, E. H. G., & Maryam, V. (2018). The Relationship between the Characteristics of Biochar Produced at Different Temperatures and Its Impact on the Uptake of NO3 - -N. Environmental Health Engineering and Management, 5(2), 67–75. https://doi.org/10.15171/EHEM.2018.10.
Amri, N., Zakaria, R., Zailani, M., & Bakar, A. (2009). Adsorption of Phenol Using Activated Carbon Adsorbent from Waste Tyres. Pertanika Journal of Science and Technology, 17, 371–79.
Azaria, A., Mahvi, A. H., Naseri, S., Mohammad S., & Kalantary, R. R. (2014). Nitratee Removal From Aqueous Solution By Using Modified Clinoptilolite Zeolite. Arch Hyg Sci Journal Homepage, 33(11), 184–92.
Buckingham, C. K.,Wu, L., & Lou, Y. (2014). Can’t See the (Bamboo) Forest for the Trees: Examining Bamboo’s Fit Within International Forestry Institutions. Ambio, 43(6), 770–78.
Chatterjee, S., Lee, D. S., Lee, M. W., & Woo, S.H. (2009). Nitratee Removal from Aqueous Solutions by Cross-Linked Chitosan Beads Conditioned with Sodium Bisulfate. Journal of Hazardous Materials, 166(1), 508–13.
Clough, T. J., Leo, M. C., Claudia, K., & Christoph, M. (2013). A Review of Biochar and Soil Nitrogen Dynamics. Agronomy, 3(2), 275–93.
Fidel, R., Laird, D., & Spokas, K. (2018). Sorption of ammonium and nitrate to biochars is electrostatic and pH-dependentarameters. Scientific Reports, 8(1), 1-10.
Gai, X., Wang, H., Liu, J., Zhai, L., Liu, S., Ren, T., & Liu, H. (2014). Effects of Feedstock and Pyrolysis Temperature on Biochar Adsorption of Ammonium and Nitrate. PLoS ONE, 9(12), 1–19.
Hafshejania, L. D., Hooshmanda, A., Naseria, A. A., Mohammadi, A. S., Abbasi, F., & Bhatnagar., A. (2016). Removal of Nitrate from Aqueous Solution by Modified Sugarcane Bagasse Biochar. Ecological Engineering, 95, 101–11.
Halim, A., A., Latif, M.T., & Ithnin, A. (2013). Ammonia Removal from Aqueous Solution Using Organic Acid Modified Activated Carbon. World Applied Sciences Journal, 24(1), 1–6.
Kameyama, K., Miyamoto, T., Iwata, Y., Shiono, T., & Kameyama, T. (2016). Influences of Feedstock and Pyrolysis Temperature on the Nitratee Adsorption of Biochar. Soil Science and Plant Nutrition, 62(2), 180–84.
Kołodyńska, D.,Wne˛trzak, R., Leahy, J. J., Hayes, M. H. B., Kwapin´ ski ,W., & Hubicki, Z. (2012). Kinetic and Adsorptive Characterization of Biochar in Metal Ions Removal. Chemical Engineering Journal, 197(July), 295–305.
Mizuta, K., Matsumoto, T., Hatate, Y., Nishihara, K., & Nakanishi, T. (2004). Removal of Nitrate-Nitrogen from Drinking Water Using Bamboo Powder Charcoal. Bioresource Technology, 95(3), 255–57.
Mohan, D., Sarswat, A., Ok, Y.S., & Pittman, C.U. (2014). Organic and Inorganic Contaminants Removal from Water with Biochar, a Renewable, Low Cost and Sustainable Adsorbent - A Critical Review. Bioresource Technology, 160, 191–202.
Nartey, O.D., & Baowei Z. S. (2014). “Biochar Preparation, Characterization, and Adsorptive Capacity and Its Effect on Bioavailability of Contaminants: An Overview.” Advances in Materials Science and Engineering, 2014(1), 1–13. https://doi.org/10.1155/2014/715398
Nguyen X. L., Do, T. M. P, Nguyen, H. C., Kose, R., Okayama, T., Pham, N. T., Nguyen, D. P., & Miyanishi, T. (2018). Properties of Biochars Prepared from Local Biomass in the Mekong Delta, Vietnam. Bioresources, 13(4), 41–72.
Nwabanne, J. T., & Igbokwe, P. K. (2012). Comparative Study of Lead ( II ) Removal from Aqueous Solution Using Different Adsorbents. IInternational Journal of Engineering Research and Applications (IJERA), 2(4), 1830–38.
Peiyu, L., Yu, H., Jinling, H., Yuting, Z., & Cao, H. (2016). The Review on Adsorption and Removing Ammonia Nitrogen with Biochar on Its Mechanism. MATEC Web of Conferences, 67, 1–11.
Qian, K., Kumar, A., Patil, K., Bellmer, D., Wang, D., Yuan, W., & Huhnke, R.L. (2013). Effects of Biomass Feedstocks and Gasification Conditions on the Physiochemical Properties of Char. Energies, 6(8), 3972–86.
Schick, J., Caullet, P., Paillaud, J. L., Patarin, J., & Mangold-Callarec, C. (2010). Batch-Wise Nitrate Removal from Water on a Surfactant-Modified Zeolite. Microporous and Mesoporous Materials, 132(3), 395–400. http://dx.doi.org/10.1016/j.micromeso.2010.03.018.
Shin, J. D., Choi, E., Jang, E., Hong, S. G., Lee, S. R., & Ravindran, B. (2018). Adsorption Characteristics of Ammonium Nitrogen and Plant Responses to Biochar Pellet. Sustainability (Switzerland), 10(5), 1–11.
Song, X., Zhou, G., Jiang, H., Yu, S., Fu, J., Li, W., Wang, W., Ma, Z., & Peng, C. (2011). Carbon Sequestration by Chinese Bamboo Forests and Their Ecological Benefits: Assessment of Potential, Problems, and Future Challenges. Environmental Reviews, 19(1), 418–28.
Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of Biochar for the Removal of Pollutants from Aqueous Solutions. Chemosphere, 125, 70–85. http://dx.doi.org/10.1016/j.chemosphere.2014.12.058.
Tran, H. N., Sheng, J. Y, & Huan, P. C. (2016). Effect of Pyrolysis Temperatures and Times on the Adsorption of Cadmium onto Orange Peel Derived Biochar. Waste Management and Research, 34(2), 129–38.
Turmuzi, M., Tarigan, Z.N., Nadapdap, L., & Batubara, F. (2018). Effect of PH and Complementary Ion Concentration on Nitrate Removal Using PuroliteA400 Resin Impregnated Cu in Batch System. IOP Conference Series: Materials Science and Engineering, 309(1), 012106. doi:10.1088/1757-899X/309/1/012106
Viglašová, E., Galamboš, M., Danková, Z., Krivosudsky´, L., Lengauer, C.L., Nowotny, R.H., Soja, G., Rompel, A., Matík, M., & Briancˇin, J. (2018). Production, Characterization and Adsorption Studies of Bamboo-Based Biochar/Montmorillonite Composite for Nitrate Removal. Waste Management, 79(September), 385–94.
Wan, D., Liu, H., Liu, R., Qu, J., Li, S., Zhang, J. (2012). Adsorption of Nitrate and Nitrite from Aqueous Solution onto Calcined (Mg-Al) Hydrotalcite of Different Mg/Al Ratio. Chemical Engineering Journal, 195–196, 241–47. http://dx.doi.org/10.1016/j.cej.2012.04.088.
Zhao, H., Xue, Y., Long, L., & Hu, X. (2018). Adsorption of Nitrate onto Biochar Derived from Agricultural Residuals. Water Science and Technology, 77(2), 548–54.