Phạm Vũ Nhật * , Nguyễn Thành Tiên , Phạm Thị Bích Thảo Trần Thị Ngọc Thảo

* Tác giả liên hệ (nhat@ctu.edu.vn)

Abstract

Density functional theory (DFT) was employed to clarify the adsorption/desorption behaviors of the rotigotine (ROT) drug on the gold surface using the small Au6 gold cluster as a model reactant. Geometries of resulting complexes are optimized using the PBE functional in conjunction with the cc-pVTZ-PP basis set for gold and the cc-pVTZ basis set for the non-metals. The binding sites and energies, along with several quantum chemical indicators are also investigated at the same level of theory. Computed results show that the drug molecules tend to anchor on the gold cluster at the N atom with binding energies around −18.6 kcal/mol (in vacuum) and −18.9 kcal/mol (in aqueous solution). If a visible light with a wavenumber of  nm is applied, the time for the recovery of Au6 from the complex will be around 0.1 to 0.2 seconds at 298 K. In addition, the gold cluster is found to benefit from a larger change of energy gap that could be converted to an electrical signal for selective detection of ROT. Noticeably, the interaction between the drug and gold cluster is a reversible process and a drug release mechanism was also proposed. Accordingly, the drug is able to separate from the gold surface due to either a slight change of pH in tumor cells, or a presence of cysteine residues in protein matrices.
Keywords: Cysteine, DFT calculations, gold cluster, rotigotine

Tóm tắt

Lý thuyết phiếm hàm mật độ (DFT) được sử dụng để khảo sát cơ chế hấp phụ phân tử rotigotine (ROT) lên bề mặt vàng, sử dụng cluster vàng Au6 làm mô hình phản ứng. Cấu trúc của các phức hợp sinh ra được tối ưu hóa bởi phiếm hàm PBE kết hợp với bộ cơ sở cc-pVTZ-PP cho Au và cc-pVTZ cho các phi kim. Vị trí, năng lượng liên kết và một số chỉ số lượng tử cũng được khảo sát tại cùng mức lý thuyết. Kết quả tính toán cho thấy các phân tử thuốc có xu hướng neo đậu trên cluster vàng thông qua nguyên tử N với năng lượng liên kết khoảng −18,6 kcal/mol trong pha khí và −18,9 kcal/mol trong nước. Khi sử dụng ánh sáng khả kiến với bước sóng nm, thời gian hồi phục của Au6 từ 0,1 đến 0,2 giây ở 298 K. Ngoài ra, năng lượng vùng cấm của Au6 giảm đáng kể trong các phức hợp Au6∙ROT và có thể được chuyển hóa thành tín hiệu điện giúp phát hiện chọn lọc ROT. Đáng lưu ý, tương tác giữa ROT và cluster vàng là quá trình thuận nghịch, và cơ chế giải phóng ROT cũng đã được đề xuất. Theo đó, ROT dễ dàng tách khỏi bề mặt vàng do sự thay đổi nhỏ của pH trong tế bào khối u hoặc sự hiện diện của dư lượng cysteine trong các protein.     
Từ khóa: Cluster vàng, cysteine, lý thuyết DFT, rotigotine

Article Details

Tài liệu tham khảo

Achar, S., & Puddephatt, R. J. (1994). Organoplatinum dendrimers formed by oxidative addition. Angewandte Chemie International Edition, 33(8), 847–849.

Bi, C., Wang, A., Chu, Y., Liu, S., Mu, H., Liu, W., . . . Li, Y. (2016). Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment. International journal of nanomedicine, 11, 6547-6559.

Brar, S. K., & Verma, M. (2011). Measurement of nanoparticles by light-scattering techniques. Trends in Analytical Chemistry, 30(1), 4–17.

Chah, S., Hammond, M. R., & Zare, R. N. (2005). Gold nanoparticles as a colorimetric sensor for protein conformational changes. Chemistry & Biology, 12(3), 323-328. doi:10.1016/j.chembiol.2005.01.013

Chen, J. J., Swope, D. M., Dashtipour, K., & Lyons, K. E. (2009). Transdermal rotigotine: A clinically innovative dopamine‐receptor agonist for the management of Parkinson's disease. Pharmacotherapy: The journal of human pharmacology and drug therapy, 29(12), 1452-1467.

Choi, S., Dickson, R. M., & Yu, J. (2012). Developing luminescent silver nanodots for biological applications. Chemical Society Reviews, 41(5), 1867-1891. doi:10.1039/c1cs15226b

Eckhardt, S., Brunetto, P. S., Gagnon, J., Priebe, M., Giese, B., & Fromm, K. M. (2013). Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chemical Reviews, 113(7), 4708.

Fenwick, O., Coutiño-Gonzalez, E., Grandjean, D., Baekelant, W., Richard, F., Bonacchi, S., . . . Samorì, P. (2016). Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites. Nature Materials, 15, 1017.

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., . . . Fox, D. J. (2016). Gaussian 16 Rev. B.01. Wallingford, CT.

Ghosh, P., Han, G., De, M., Kim, C. K., & Rotello, V. M. (2008). Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews, 60(11), 1307.

Gwinn, E., Schultz, D., Copp, S. M., & Swasey, S. (2015). DNA-protected silver clusters for nanophotonics. Nanomaterials (Basel), 5(1), 180-207. doi:10.3390/nano5010180

Hadipour, N. L., Ahmadi Peyghan, A., & Soleymanabadi, H. (2015). Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors. Journal of Physical Chemistry C, 119(11), 6398.

Hazrati, M. K., Bagheri, Z., & Bodaghi, A. (2017). Application of C30B15N15heterofullerene in the isoniazid drug delivery: DFT studies. Physica E: Low-dimensional Systems and Nanostructures, 89, 72-76.

Jain, P. K., Lee, K. S., El-Sayed, I. H., & El-Sayed, M. A. (2006). Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. Journal of Physical Chemistry B, 110(14), 7238-7248. doi:10.1021/jp057170o

Kam, N. W. S., Liu, Z., & Dai, H. (2005). Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. Journal of the American Chemical Society, 127(136), 12492–12493.

Kulisevsky, J., & Pagonabarraga, J. (2010). Tolerability and safety of ropinirole versus other dopamine agonists and levodopa in the treatment of Parkinson’s disease. Drug safety, 33(2), 147-161.

Le Guével, X., Hötzer, B., Jung, G., Hollemeyer, K., Trouillet, V., & Schneider, M. (2011). Formation of fluorescent metal (Au, Ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy. Journal of Physical Chemistry C, 115(22), 10955-10963.

Mani, V., Chikkaveeraiah, B. V., Patel, V., Gutkind, J. S., & Rusling, J. F. (2009). Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification. ACS Nano, 3(3), 585-594. doi:10.1021/nn800863w

Nhat, P. V., Nguyen, P. T. N., & Si, N. T. (2020). A computational study of thiol-containing cysteine amino acid binding to Au6and Au8gold clusters. Journal of Molecular Modeling, 26(3), 1.

Nhat, P. V., Si, N. T., Leszczynski, J., & Nguyen, M. T. (2017). Another look at structure of gold clusters Aunfrom perspective of phenomenological shell model. Chemical Physics, 493, 140-148.

O'Neil, M. J. (2013). The Merck index: an encyclopedia of chemicals, drugs, and biologicals: RSC Publishing.

Obliosca, J. M., Liu, C., & Yeh, H.-C. (2013). Fluorescent silver nanoclusters as DNA probes. Nanoscale, 5(18), 8443-8461. doi:10.1039/C3NR01601C

Pakiari, A. H., & Jamshidi, Z. (2007). Interaction of amino acids with gold and silver clusters. Journal of Physical Chemistry A, 111(20), 4391-4396.

Peng, S., Cho, K., Qi, P., & Dai, H. (2004). Ab initio study of CNT NO2gas sensor. Chemical Physics Letters, 387(4), 271-276.

Peterson, K. A., & Puzzarini, C. (2005). Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theoretical Chemistry Accounts, 114(4), 283-296.

Petty, J. T., Nicholson, D. A., Sergev, O. O., & Graham, S. K. (2014). Near-infrared silver cluster optically signaling oligonucleotide hybridization and assembling two DNA hosts. Analytical Chemistry, 86(18), 9220-9228. doi:10.1021/ac502192w

Sharma, J., Rocha, R. C., Phipps, M. L., Yeh, H.-C., Balatsky, K. A., Vu, D. M., . . . Martinez, J. S. (2012). A DNA-templated fluorescent silver nanocluster with enhanced stability. Nanoscale, 4(14), 4107-4110. doi:10.1039/C2NR30662J

Sun, T., Guo, Q., Zhang, C., Hao, J., Xing, P., Su, J., . . . Liu, G. (2012). Self-assembled vesicles prepared from amphiphilic cyclodextrins as drug carriers. Langmuir, 28(23), 8625–8636.

Swietach, P., Vaughan-Jones, R. D., Harris, A. L., & Hulikova, A. (2014). The chemistry, physiology and pathology of pH in cancer. Philosophical Transactions of the Royal Society B, 369(1638), 20130099.

Thaxton, C. S., Georganopoulou, D. G., & Mirkin, C. A. (2006). Gold nanoparticle probes for the detection of nucleic acid targets. Clinica Chimica Acta, 363(1-2), 120-126. doi:10.1016/j.cccn.2005.05.042

Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum mechanical continuum solvation models. Chemical Reviews, 105(8), 2999-3094. doi:10.1021/cr9904009

Veronese, F. M., & Pasut, G. (2005). PEGylation, successful approach to drug delivery. Drug Discovery Today, 10(21), 1451–1458.

Wang, W., Rusin, O., Xu, X., Kim, K. K., Escobedo, J. O., Fakayode, S. O., . . . Strongin, R. M. (2005). Detection of Homocysteine and Cysteine. Journal of the American Chemical Society, 127(45), 15949-15958. doi:10.1021/ja054962n

Wingo, T. S., Evatt, M., Scott, B., Freeman, A., & Stacy, M. (2009). Impulse control disorders arising in 3 patients treated with rotigotine. Clinical neuropharmacology, 32(2), 59-62.

Xavier, P. L., Chaudhari, K., Baksi, A., & Pradeep, T. (2012). Protein-protected luminescent noble metal quantum clusters: an emerging trend in atomic cluster nanoscience. Nano Reviews, 3, 10.3402/nano.v3403i3400.14767. doi:10.3402/nano.v3i0.14767

Zhai, H.-J., Kiran, B., Dai, B., Li, J., & Wang, L.-S. (2005). Unique CO chemisorption properties of gold hexamer: Au6(CO)n-(n = 0−3). Journal of the American Chemical Society, 127(34), 12098-12106.