Nguyễn Thị Hồng Vân *

* Tác giả liên hệ (nthvan@ctu.edu.vn)

Abstract

Two Artemia populations originated from Artemia franciscana; SFB (San Francisco Bay) anh Vinh Chau were cultured in the same laboratory condition at different temperature levels of 25, 30 and 320C aiming to investigate the change on fatty acid profiles in their biomass when subjected to temperatures from nauplii to adult stage. After two weeks of culturing, despite of various variations in fatty acid content of Nauplii, results showed that there was no difference in fatty acid profiles as well as content of both populations at the same temperature, they both was very similar in FAs except saturated fatty acid 18:0. Results also confirmed that in Artemia fatty acid composition, food and temperature effect was more than strain-specificity. At 320C temperature, saturated fatty acid occurred a highest level (>25%) compared to other lower levels (24%), p<0,05). At suitable temperature, depending on strain, most of FAs showed higher concentrations than other levels. Beside that, living conditions (food, temperature, salinity...) were assumed to be related to Artemia cysts was also discussed.
Keywords: Artemia, fatty acid (FA), saturated fatty acids (SFA), mono-unsaturated fatty acids (MUFA), poly-unsaturated fatty acids (PUFA)

Tóm tắt

Hai dòng Artemia cùng có nguồn gốc từ Artemia franciscana SFB (San Francisco Bay) và Vĩnh Châu được thả nuôi trong cùng điều kiện thí nghiệm ở các ngưỡng nhiệt độ khác nhau 25, 30 và 320C để theo dõi về sự biến đổi về thành phần acid béo của chúng dưới ảnh hưởng của nhiệt độ trong quá trình nuôi từ nauplii lên sinh khối. Sau hai tuần nuôi kết quả cho thấy, thành phần của các FA ở hai quần thể là khá tương đồng và biến đổi không theo quy luật ngoại trừ acid béo bảo hòa 18:0. Thức ăn, nhiệt độ tác động đến thành phần các FA hơn là tính đặc trưng dòng, ở nhiệt độ cao thành phần các acid béo bảo hòa (SFA) cao hơn (>25%) so với ở nhiệt độ thấp hơn (24%, p<0,05), ở các ngưỡng nhiệt độ thuận lợi tùy theo dòng, thường các FA có hàm lượng cao hơn so với các ngưỡng nhiệt độ khác trong thí nghiệm. Ngoài ra, môi trường sống (thức ăn, nhiệt độ, độ mặn...) của quần thể Artemia, được cho là có liên quan đến sự hình thành phổ FA trong trứng bào xác Artemia cũng được đề cập.
Từ khóa: Acid béo (FA), acid béo bão hòa (SFA), acid béo chưa bão hòa một nối đôi (MUFA), acid béo chưa bão hòa nhiều (PUFA), khả năng chịu nhiệt cao

Article Details

Tài liệu tham khảo

Anh, N.T.N. Optimization of ArtemiaBiomass in salt ponds in Vietnam and use as feed ingredient in local aquaculture. Ph.D thesis, Ghent University, Belgium. 2009.

Browne RA, Wanigasekara G. Combined effects of salinity and temperature on survival and reproduction of five species of Artemia. Journal of Experimental Marine Biology and Ecology 244 (2000) 29–44.

Cartes, J.E. Temporal changes in lipid biomarkers, especially fatty acids, of the deep-sea crustaceans Boreomysis arctica and Nematoscelis megalops: implications of their biological cycle and habitat near the seabed. Journal of the Marine Biological Association of the United Kingdom, 2011, 91(4), 783–792.

Gracey A.Y., Logue J., Tiku P.E. And Cossins A.R. . Adaptation of biological membranes to temperature: Biophysical perspectives and molecular mechanisms. In: Animals and temperature phenotypic and evolutionary adaptation edited by Ian A. Johnston and Albert F. Bennett. Cambridge University Press 1996 (1-22).

Guschina Irina A, Harwood John L. Mechanisms of temperature adaptation in poikilotherms. FEBS Letters 580 (2006) 5477–5483.

Hazel Jeffrey R. Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? AmlU. Rev. Physiol. 1995. 57: 19-42 .

Hoa, N.V. Seasonal Farming of brine shrimp Artemiafranciscanain artisarnal salt-ponds in Vietnam: Effect of temperature and Salinity. Ph.D thesis, Ghent University Belgium. 2002.

James S. Clegg, Nguyen VanHoa & Patrick Sorgeloos. Thermal tolerance and heatshock proteins in encysted enbryos Artemiafrom widely different thermal habitatsHydrobiologia 466: 221-229.200l.

Kappas, I, Abatzopoulos TJ, N. Van Hoa, Sorgeloos P, Beardmore JA. Genetic and reproductive differentiation of Artemiafranciscanain a new environment. Marine Biology (2004) 146: 103–117.

Kelly Jennifer R., Scheibling Robert E..Fatty acids as dietary tracers in benthic food webs. Marine Ecology Progress Series Vol. 446:1-22, 2012.

Luong-Van Thinh, Susan M. Renaud, David L. Parry. Evaluation of recently isolated Australian tropical microalgae for the enrichment of the dietary value of brine shrimp, Artemianauplii. Aquaculture 170 _1999. 161–173.

NavarroJ.C. and Amat F. Effect of algal diets on the fatty acid composition of brine shrimp, Artemiasp., cysts. Aquaculture: Volume 101, Issues 3-4, 15 February 1992, Pages 223-227.

Navarro J.C., Amat F., Sargent J. Fatty acid composition of coastal and inland Artemiasp. populations from Spain. Aquaculture, Volume 102, Issue 3, 15 March 1992, Pages 219-230.

Rafael Tizol-Correa, Laura Carreón-Palau, Bertha O. Arredondo-Vega, Gopal Murugan, Laura Torrentera, Teresita D. N J. Maldonado-Montiel, and Alejandro M. Maeda-Martínez. Fatty acid composition of Artemia(branchiopoda: anostraca) cysts from tropical salterns of southern México and Cuba. Journal of Crustacean Biology 26(4):503-509. 2006.

Ruiz O, Amat F, Navarro JC. A comparative study of the fatty acid profile of Artemiafranciscanaand A. persimiliscultured at mesocosm scale. Journal of Experimental Marine Biology and Ecology 354 (2008) 9–16.

Ruiz O., Medina G. R., Cohen R. G., Amat F., Navarro J. C. Diversity of the fatty acid composition of Artemiaspp. cysts from Argentinean populations. Ecology Progress Series, 2007.

Sorgeloos, P. , Dhert, P. , Candreva, P. , 2001: Use of the brine shrimp, Artemiaspp., in marine fish larviculture. Aquaculture, vol.200, pp147–159.

Van Dooremalen, Jacco Koekkoek and Jacintha Ellers Coby. Temperature-induced plasticity inmembrane and storage lipid composition: Thermal reaction norms across five different temperatures. 2010. G Model IP-2612; No.of Pages7.

Van Stappen G. Zoogeography. In: ArtemiaBasis and Applied Biology. Abatzopolous Th.J, Beardmore J.A., Clegg J.S and Sorgeloos P. Kluwer Academic Publishers. 2005.

Wassim Guermazi, Jannet Elloumi, Habib Ayadi, Abderrahmen Bouain and Lotfi Aleya. Coupling changes in fatty acid and protein composition of Artemiasalinawith environmental factors in the Sfax solar saltern (Tunisia). Aquat. Living Resour. 21, 63–73 (2008).

Zhu Luying, Xuecheng Zhang, Lei Ji, Xiaojin Song, Chenghong Kuang. Changes of lipid content and fatty acid composition of Schizochytrium limacinum in response to different temperatures and salinities. Process Biochemistry 42 (2007) 210–214

Zhukova Natalia V, Imbs Andrey B and Lia Fa Yi. Diet-induced changes in lipid and fatty acid composition of ArtemiasalinaComparative Biochemistry and Physiology Part B 120 (1998) 499–506.

Zhukova Natalia V. and Aidaicher Nina A. Fatty fatty acid composition of 15 species of marine. Phytochemistry, Vol. 39, No. 2, 1995 (351 356).