SỰ DUY NHẤT VÀ TÍNH LIÊN TỤC LIPSCHITZ CỦA NGHIỆM BÀI TOÁN CÂN BẰNG ĐỐI XỨNG ĐA TRỊ TRONG KHÔNG GIAN MÊTRIC
Abstract
Tóm tắt
Article Details
References
L.Q. Anh, P.Q. Khanh, Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems, J. Math. Anal. Appl. 294 (2004), 699-711.
L. Q. Anh and P. Q. Khanh, On the Hölder continuity of solutions to parametric multivalued vector equilibrium problems, J. Math. Anal. Appl. 321 (2006), 308-315.
L. Q. Anh and P. Q. Khanh, Uniqueness and Hölder continuity of the solution to multivalued equilibrium problems in metric spaces, J. Glob. Optim. 37 (2007), 449-465.
L. Q. Anh and P. Q. Khanh, Various kinds of semicontinuity and the solution sets of parametric multivalued symmetric vector quasiequilibrium problems, J. Glob. Optim. 41 (2008), 539-558.
L. Q. Anh and P. Q. Khanh, Hölder continuity of the unique solution to quasiequilibrium problems in metric spaces, J. Optim. Theory Appl. 41 (2009), 37-54.
L.Q. Anh, P.Q. Khanh, On the Hölder continuity of solutions to parametric multivalued vector equilibrium problems, J. Math. Anal. Appl. 321 (2006) 308–315.
D. Aussel, D.T. Luc, Existence conditions in general quasimonotone variational inequalities, Bull. Austral. Math. Soc., 71 (2005), 285-303.
M. Bianchi, R. Pini, Sensitivity for parametric vector equilibria, Optimization 55 (2006) 221- 230.
E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994) 123-145.
J.Y. Fu, Symmetric vector quasiequilibrium problems, J. Math. Anal. Appl., 285 (2003), 708–713.
N.D. Yen, Hölder continuity of solutions to parametric variational inequalities, Appl. Math. Optim. 31 (1995) 245-255.
N.D. Yen, Lipschitz continuity of solutions of variational inequalities with a parametric polyhedral constraint, Math. Oper. Res. 20 (1995) 695-708.