Transfer rates of Campylobacter jejuni and Campylobacter coli during simulated handling of chicken meat and chicken liver in Ho Chi Minh City
Abstract
This study aims to assess the risk of Campylobacter jejuni and C. coli transmission from raw chicken meat and chicken liver to food contact surfaces, utensils, and foods under simulated household scenarios. The results showed that wooden cutting boards exhibited higher contamination levels compared with plastic boards, with transfer rates from liver samples reaching 25.86% for C. jejuni and 23.46% for C. coli, while plastic boards showed only 1.90% and 1.40%, respectively. Cross-contamination further spread to food items, as demonstrated by direct-contact simulation with a cucumber placed on an uncleaned wooden board, resulting in a 12.83% contamination rate for C. jejuni. Handwashing with water only was insufficient for bacterial removal, whereas using soap significantly reduced bacterial counts to <10 CFU per swab sample. In addition, bacterial transfer was detected on secondary surfaces such as faucet handles (4.08%) and ready-to-eat food like bread (4.88%), indicating the potential for chain transmission within kitchen environments.
Tóm tắt
Nghiên cứu này được thực hiện nhằm đánh giá rủi ro lây nhiễm Campylobacter jejuni và C. coli từ thịt gà và gan gà sống sang các bề mặt, dụng cụ chế biến và thực phẩm trong những tình huống mô phỏng. Kết quả cho thấy thớt bằng gỗ thể hiện mức nhiễm cao hơn so với thớt bằng nhựa, với tỷ lệ lây nhiễm từ gan đạt 25,86% (C. jejuni) và 23,46% (C. coli), trong khi trên thớt nhựa chỉ lần lượt 1,90% và 1,40%. Sự lây nhiễm này tiếp tục lan sang thực phẩm khi thực hiện mô phỏng tiếp xúc trực tiếp (dưa leo) đặt trên thớt gỗ chưa được vệ sinh ghi nhận tỷ lệ nhiễm 12,83% (C. jejuni). Việc chỉ rửa tay với nước không thể loại bỏ vi khuẩn, trong khi việc sử dụng xà phòng giúp làm giảm mật số vi khuẩn đáng kể (<10 CFU/mẫu swab). Ngoài ra, hiện tượng lây nhiễm vi khuẩn cũng được ghi nhận trên các bề mặt thứ cấp như tay nắm vòi nước (4,08%) và thực phẩm ăn liền như bánh mì (4,88%), phản ánh khả năng lan truyền theo chuỗi trong môi trường bếp.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
An, N.M., and Hiroaki, N. (2025). Understanding travel patterns of ride-hailing service sub-population groups and effects of transit investment on ride-hailing users’ potential mode switching: A case study of Ho Chi Minh City, Vietnam. Transport Policy, 162, 456–476. https://doi.org/10.1016/j.tranpol.2024.12.024
Andritsos, N.D., Tzimotoudis, N., and Mataragas, M. (2023). Prevalence and distribution of thermotolerant Campylobacter species in poultry: a comprehensive review with a focus on the factors affecting the detection and enumeration of Campylobacter jejuni and Campylobacter coli in chicken meat. In Applied Sciences (Switzerland), 13(14), 8079. https://doi.org/10.3390/app13148079
Anis, N., Bonifait, L., Quesne, S., Baugé, L., Yassine, W., Guyard-Nicodème, M., & Chemaly, M. (2022). Survival of Campylobacter jejuni co-cultured with Salmonella spp. in aerobic conditions. Pathogens, 11(7), 812. https://doi.org/10.3390/pathogens11070812
Araújo, P. M., Batista, E., Fernandes, M. H., Fernandes, M. J., Gama, L. T., & Fraqueza, M. J. (2022). Assessment of biofilm formation by Campylobacter spp. isolates mimicking poultry slaughterhouse conditions. Poultry Science, 101(2), 101586. https://doi.org/10.1016/J.PSJ.2021.101586
Bai, Y., Lin, X.H., Zhu, J.H., Cui, S.H., Guo, L. X., Yan, S.F., Wang, W., Xu, J., and Li, F. Q. (2021). Quantification of cross-contamination of Campylobacter jejuni during food preparation in a model kitchen in China. Journal of Food Protection, 84(5), 850–856. https://doi.org/10.4315/JFP-20-280
Balta, I., Linton, M., Pinkerton, L., Kelly, C., Stef, L., Pet, I., Stef, D., Criste, A., Gundogdu, O., and Corcionivoschi, N. (2021). The effect of natural antimicrobials against Campylobacter spp. and its similarities to Salmonella spp, Listeria spp., Escherichia coli, Vibrio spp., Clostridium spp. and Staphylococcus spp. Food Control, 121, 107745. https://doi.org/10.1016/J.FOODCONT.2020.107745
Cai, D., He, J., Zhang, R., Liao, X., Ahn, J., Feng, J., and Ding, T. (2025). Quantitative data and models for bacterial cross-contamination in domestic kitchen during food handling and preparation. Microbial Risk Analysis, 30, 100356. https://doi.org/10.1016/J.MRAN.2025.100356
Cardoso, M.J., Ferreira, V., Truninger, M., Maia, R., and Teixeira, P. (2021). Cross-contamination events of Campylobacter spp. in domestic kitchens associated with consumer handling practices of raw poultry. International Journal of Food Microbiology, 338. https://doi.org/10.1016/j.ijfoodmicro.2020.108984
CDC. (2024). U.S Centers for Disease Control and Preventive - Clean hands. https://www.cdc.gov/Clean-Hands/about/Index.Html
Chowdhury, S.A., Chowdhury, Anamul H., Ashrafudoulla., Rahman, A., Yoon, H.J., and Ha, S.D. (2025). Advancing biofilm prevention in the food industry to combat food degradation: A bibliometric analysis on the perspective of food safety. Food Control, 177, 111437. https://doi.org/10.1016/J.FOODCONT.2025.111437
Clinical and Laboratory Standards Institute M07. (2024). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Clinical Laboratory Standards Institute. Retrieved on 15 November, 2025 from https://clsi.org/shop/standards/m07/#:~:text=CLSI%20M07%20provides%20essential%20guidance%20for%20antimicrobial%20susceptibility,broth%20macrodilution%2C%20broth%20microdilution%2C%20and%20agar%20dilution%20methods.
de Oliveira, J.P., da Silva, D.C., Tadielo, L.E., dos Santos, E.A.R., da Silva, E.C., Sampaio, A.N. da C.E., Possebon, F.S., and Pereira, J.G. (2025). Handling practices and microbiological assessment of wooden and plastic cutting boards in domestic kitchens. LWT, 221, 117606. https://doi.org/10.1016/J.LWT.2025.117606
Duong, M.C., Nguyen, H.T., Duong, B.T., and Vu, M. T. (2022). Assessment of hand hygiene practices of University students in Vietnam amid the COVID-19 pandemic: A Brief Report. Disaster Medicine and Public Health Preparedness, 16(5), 1844–1847. https://doi.org/10.1017/dmp.2021.256
EFSA. (2025). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2022–2023. EFSA Journal, 23(3), e9237. https://doi.org/10.2903/j.efsa.2025.9237
El Baaboua, A., El Maadoudi, M., Bouyahya, A., Belmehdi, O., Kounnoun, A., Cheyadmi, S., Ouzakar, S., Senhaji, N.S., and Abrini, J. (2022). Evaluation of the combined effect of antibiotics and essential oils against Campylobacter multidrug resistant strains and their biofilm formation. South African Journal of Botany, 150, 451–465. https://doi.org/10.1016/j.sajb.2022.08.027
Eriksson, D., Råhlén, E., Bergenkvist, E., Skarin, M., Fernström, L.L., Rydén, J., and Hansson, I. (2023). Survival of Campylobacter jejuni in frozen chicken meat and risks associated with handling contaminated chicken in the kitchen. Food Control, 145, 109471. https://doi.org/10.1016/j.foodcont.2022.109471
FDA. (2022). Food Code. Retrieved on 15 November 2025 from https://www.fda.gov/media/164194/download?attachment
Foddai, A., Nauta, M., and Ellis-Iversen, J. (2023). A model using an inter-sectorial data integration process indicates that reducing Campylobacter cross-contamination at slaughter mitigates the risk of human campylobacteriosis effectively. Microbial Risk Analysis, 23, 100248. https://doi.org/10.1016/j.mran.2023.100248
Ho, T.H., Hoang, P.H., Ngoc, L.V.T., Dinh, M.N., Thanh, D.D., Dinh, V.N., Van, O.P., Lan, P.N.T., Quoc, T.N., The, N.H., Trong, N.L. D., and Van Dang, C.V. (2024). Large-scale salmonella outbreak associated with banh mi, Viet Nam, 2024. Western Pacific Surveillance and Response Journal, 15(3), 1-7. https://doi.org/10.5365/wpsar.2024.15.3.1168
International Organization for Standardization. (2023). ISO 10272-2:2023 - Microbiology of the food chain - Horizontal method for detection and enumeration of Campylobacter spp. - Part 2: Colony-count technique - AMENDMENT 1: Inclusion of methods for molecular confirmation and identification of thermotolerant Campylobacter spp. and changes in the performance testing of culture media. Retrieved on 15 November 2025 from https://www.iso.org/standard/77640.html.
Jakobsen, T.H., Kirkegaard, J.B., Lichtenberg, M., Kvich, L.A., Gottlieb, H., McNally, M., and Bjarnsholt, T. (2025). Detection limitations of bacteria in tissue samples. Bone & Joint Research, 14(6), 560-567.
https://doi.org/10.1302/2046-3758.146.BJR-2024-0410.R1
Kim, J.S., Kim, T.Y., Lim, M.C., and Khan, M.S. I. (2024). Campylobacter control strategies at postharvest level. Food Science and Biotechnology, 33(13), 2919–2936. https://doi.org/10.1007/s10068-024-01644-7
Kirchner, M., Goulter, R.M., Bernstein, C., Lavallee, A., Schaffner, D., Chapman, B., and Jaykus, L.A. (2023). The role of hands in cross-contamination of kitchen surfaces during meal preparation. American Journal of Infection Control, 51(11), A44–A57. https://doi.org/10.1016/j.ajic.2023.04.162
La, N.Q., Hoang, M.L., Tran, T.T., Dang, C.K., and Tran, B.T. (2023). Assessing the knowledge and practice toward food safety: An investigation of food selection and processing among primary food caregivers in a town of Ha Tinh province, Vietnam. Heliyon, 9(9), e20004. https://doi.org/10.1016/j.heliyon.2023.e20004
Lai, H., Liu, M., Tang, Y., Ren, F., Xu, M., Guo, C., Jiao, X.A., and Huang, J. (2024). Microbiological safety assessment of restaurants and HACCP-certified kitchens in hotels: A study in eastern China. International Journal of Food Microbiology, 425, 110868. https://doi.org/10.1016/J.IJFOODMICRO.2024.110868
Lai, H., Tang, Y., Ren, F., Jiao, X. A., & Huang, J. (2023). Evaluation of hygiene practice for reducing Campylobacter contamination on cutting boards and risks associated with chicken handling in kitchen environment. Foods, 12(17), 3245. https://doi.org/10.3390/foods12173245
Lehri, B., Navoly, G., Corser, A., Nashar, F., Willcocks, S., Ngoc, P. T., Wren, B. W., Huong, L. Q., and Stabler, R. A. (2023). Understanding Campylobacter coli isolates from the Vietnamese meat production network: a pilot study. Biorivx, 11(10), 566519. https://doi.org/10.1101/2023.11.10.566519
Manzanares-Pedrosa, A., Szumilas, J., Ayats, T., Nofrarías, M., and Cerdà-Cuéllar, M. (2025). Campylobacter jejuni and Campylobacter coli in broiler chicken livers: High prevalence and surface contamination, but low load in inner tissue. Poultry Science, 104(11), 105646. https://doi.org/10.1016/j.psj.2025.105646
Mihalache, O.A., Teixeira, P., Langsrud, S., and Nicolau, A.I. (2023). Hand hygiene practices during meal preparation - a ranking among ten European countries. BMC Public Health, 23(1), 1315. https://doi.org/10.1186/s12889-023-16222-5
Møretrø, T., Nguyen-The, C., Didier, P., Maître, I., Izsó, T., Kasza, G., Skuland, S. E., Cardoso, M. J., Ferreira, V. B., Teixeira, P., Borda, D., Dumitrascu, L., Neagu, C., Nicolau, A. I., Anfruns-Estrada, E., Foden, M., Voysey, P., and Langsrud, S. (2021). Consumer practices and prevalence of Campylobacter, Salmonella and norovirus in kitchens from six European countries. International Journal of Food Microbiology, 347, 109172. https://doi.org/10.1016/j.ijfoodmicro.2021.109172
Nguyen, T.D., Nguyen, T.M.K., Ebata, A., Fournié, G., Le, T.T.H., Nguyen, V.D., Han, A.T., Do, V.D., Pham, T.T.H., Nguyen, V.D., Vu, D.T., Alarcon, P. (2023). Mapping chicken production and distribution networks in Vietnam: An analysis of socio-economic factors and their epidemiological significances. Preventive Veterinary Medicine, 214, 105906. https://doi.org/10.1016/J.PREVETMED.2023.105906
Sarlak, Z., Rezvani, N., Parandi, E., Karami, N., Azizi-Lalabadi, M., & Rouhi, M. (2025). Species identification in meat products using quantitative and qualitative PCR techniques, with emphasis on chicken detection. Food Bioscience, 68, 106568. https://doi.org/10.1016/J.FBIO.2025.106568
Tang, Y., Jiang, Q., Tang, H., Wang, Z., Yin, Y., Ren, F., Kong, L., Jiao, X., & Huang, J. (2020). Characterization and Prevalence of Campylobacter spp. From Broiler Chicken Rearing Period to the Slaughtering Process in Eastern China. Frontiers in Veterinary Science, 7, 227. https://doi.org/10.3389/FVETS.2020.00227
Tuong, Q.T., Do, T.T.H., Nguyen, T.K.H., and Truong, T.T. (2022). Survey on infection and antibiotic resistance rates of Escherichia coli in pork and chicken meat at some markets in Buon Ma Thuot city in 2021. Vietnam Journal of Food Control, 5(3), 279–290. https://doi.org/10.47866/2615-9252/vjfc.3941
van der Vossen-Wijmenga, W. P., den Besten, H. M. W., Hazeleger, W. C., and Zwietering, M. H. (2025). Campylobacter in the domestic kitchen: Linking human and microbiological behaviour. International Journal of Food Microbiology, 441, 111270.
https://doi.org/10.1016/j.ijfoodmicro.2025.111270
Wei, H.L., Liao, Y.S., Chen, B.H., Teng, R.H., Wang, Y.W., Chang, J.H., and Chiou, C.S. (2024). Antimicrobial resistance and genetic relatedness among Campylobacter coli and Campylobacter jejuni from humans and retail chicken meat in Taiwan. Journal of Global Antimicrobial Resistance, 38, 27–34. https://doi.org/10.1016/j.jgar.2024.05.013
Williams, M.S., Ebel, E.D., and Nyirabahizi, E. (2021). Comparative history of Campylobacter contamination on chicken meat and campylobacteriosis cases in the United States: 1994–2018. International Journal of Food Microbiology, 342, 109075. https://doi.org/10.1016/j.ijfoodmicro.2021.109075