Microbial fertilizer from bacteria - An alternative solution to chemical fertilizers in sustainable farming
Abstract
Chemical fertilizers account for a large proportion of agricultural practices in Vietnam due to their rapid effectiveness, ease of use, and widespread availability; however, prolonged use of these chemicals affects soil health, human well-being, and overall ecosystem integrity. Biofertilizers contain beneficial microorganisms such as bacteria that can fix nitrogen, dissolve phosphorus and potassium, produce plant growth stimulants, and prevent stress for crops. They are considered a sustainable alternative to reduce chemical fertilizer inputs, increase the efficiency of fertilizer use, improve nutrient absorption and soil structure, and increase crop yields. However, the application of biofertilizers in agricultural cultivation is currently facing many challenges. Therefore, the study was conducted to synthesize some results of applying beneficial bacteria and the challenges of using microbial fertilizers in agricultural cultivation in a safe and climate change-adaptive direction.
Tóm tắt
Phân hóa học vẫn chiếm tỷ trọng lớn trong canh tác nông nghiệp ở Việt Nam do hiệu quả nhanh, dễ sử dụng và phổ biến rộng rãi; nhưng việc sử dụng phân bón hóa học kéo dài đã gây ra nhiều hệ lụy nghiêm trọng cho sức khoẻ đất, môi trường, con người và hệ sinh thái. Phân bón vi sinh chứa các dòng vi sinh vật có lợi như vi khuẩn có khả năng cố định đạm, phân giải lân và kali, sản xuất chất kích thích tăng trưởng thực vật và chống stress cho cây trồng được xem là giải pháp thay thế bền vững, giúp giảm lượng phân hóa học, tăng hiệu quả sử dụng phân bón, cải thiện khả năng hấp thu dưỡng chất, cấu trúc đất và tăng năng suất cây trồng. Tuy nhiên, còn nhiều vấn đề phải đối mặt để phân bón vi sinh có thể được ứng dụng rộng rãi trong canh tác nông nghiệp hiện nay. Do đó, nghiên cứu được thực hiện với mục tiêu tổng hợp một số kết quả ứng dụng vi khuẩn có lợi và thách thức sử dụng phân bón vi sinh trong canh tác nông nghiệp theo hướng an toàn và thích ứng với biến đổi khí hậu.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., & Smith, D. L. (2018). Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1473. https://doi.org/10.3389/fpls.2018.01473
Bhardwaj, A., Sharma, S., & Saini, A. (2024). Biofertilizers: Harnessing microbial power for sustainable agriculture. In A. K. Rai, P. Chandra, N. Basak, P. Sundha, & R. K. Yadav (Eds), Plant-Microbial Interactions for Sustainable Agriculture, (pp. 312–351). Cambridge Scholars Publishing.
Chandwani, S., & Amaresan, N. (2024). ACC deaminase producing bacteria alleviate the polyethylene glycol induced drought stress in black gram (Vigna mungo L.) by enhancing nutrient uptake and soil respiration activity. Scientia Horticulturae, 331, 113111. https://doi.org/10.1016/j.scienta.2024.113111
Chen, Y. H., Yang, X. Z., Li, Z., An, X. H., Ma, R. P., Li, Y. Q., & Cheng, C. G. (2020). Efficiency of potassium-solubilizing Paenibacillus mucilaginosus for the growth of apple seedling. J. Integr. Agric., 19, 2458–2469. https://doi.org/10.1016/S2095-3119(20)63303-2
Compant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of Advanced Research, 19, 29–37. https://doi.org/10.1016/j.jare.2019.03.004
Cui, K., Xu, T., Chen, J., Yang, H., Liu, X., Zhuo, R., Peng, Y., Tang, W., Wang, R., Chen, L., Zhang, X., Zhang, Z., He, Z., Wang, X., Liu, C., Chen, Y., & Zhu, Y. (2022). Siderophores, a potential phosphate solubilizer from the endophyte Streptomyces sp. CoT10, improved phosphorus mobilization for host plant growth and rhizosphere modulation. Journal of cleaner production, 367, 133110. https://doi.org/10.1016/j.jclepro.2022.133110
Danish, S., Zafar-ul-Hye, M., Mohsin, F., & Hussain, M. (2020). ACC-deaminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. PLoS ONE, 15(4), e0230615. https://doi.org/10.1371/journal.pone.0230615
Díaz-Rodríguez, A. M., Parra Cota, F. I., Cira Chávez, L. A., García Ortega, L. F., Estrada Alvarado, M. I., Santoyo, G., & de los Santos-Villalobos, S. (2025). Microbial inoculants in sustainable agriculture: Advancements, challenges, and future directions. Plants, 14(2), 191. https://doi.org/10.3390/plants14020191
dos Santos, R. M., Diaz, P. A. E., Lobo, L. L. B., & Rigobelo, E. C. (2020). Use of plant growth-promoting Rhizobacteria in maize and sugarcane: Characteristics and applications. Front. Sustain. Food Syst, 4, 136. https://doi.org/10.3389/fsufs.2020.00136
Etesami, H., Emami1, S., & Ali Alikhani, H. A. (2017). Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects - a review. Journal of Soil Science and Plant Nutrition, 17(4), 897-911. https://doi.org/10.4067/S0718-95162017000400005
Etesami, H., Jeong, B. R., & Glick, B. R. (2021). Contribution of arbuscular mycorrhizal fungi, phosphate–solubilizing bacteria, and silicon to P uptake by plant. Frontiers in plant science, 12, 699618. https://doi.org/10.3389/fpls.2021.699618
Farooq, S., Danish, S., Zafar-ul-Hye, M., Mohsin, F., & Hussain, M. (2020). ACC-deaminase producing plant growth promoting Rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. PLoS ONE, 15(4), e0230615. https://doi.org/10.1371/journal.pone.0230615
Fasusi, O., Cruz, C., & Babalola, O. (2021). Agricultural sustainability: Microbial biofertilizers in rhizosphere management. Agriculture, 11, 163. https://doi.org/10.3390/agriculture11020163
Feng, Z. J., Nie, W. B., Ma, Y. P., Li, Yu-chen, Ma, X. Y., & Zhu, H. Y. (2023). Effects of urea solution concentration on soil hydraulic properties and water infiltration capacity. The Science of the total environment, 898, 165471. https://doi.org/10.1016/j.scitotenv.2023.165471
Food and Agriculture Organization (FAO). (2021). The state of the world’s land and water resources for food and agriculture – Systems at breaking point. https://openknowledge.fao.org/items/55def12b-2a81-41e5-91dc-ac6c42f1cd0f
Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 963401. https://pmc.ncbi.nlm.nih.gov/articles/PMC3820493/
Grace, P., Rosa, D. D., Shcherbak, I., Strazzabosco, A., Rowlings, D., Scheer, C., Barton, L., Wang, W., Schwenke, G., Armstrong, R., Porter, I., & Bell, M. (2023). Revised emission factors for estimating direct nitrous oxide emissions from nitrogen inputs in Australia’s agricultural production systems: A meta-analysis. Soil Research, 62(1), SR23070. https://doi.org/10.1071/SR23070
Habibi, S., Djedidi, S., Ohkama-Ohtsu, N., Sarhadi, W. A., Kojima, K., Rallos, R. V., Ramirez, M. D. A., Yamaya, H., Sekimoto, H., & Yokoyama, T. (2019). Isolation and screening of indigenous plant growth-promoting Rhizobacteria from different rice cultivars in afghanistan soils. Microbes Environments, 34, 347–355. https://doi.org/10.1264/jsme2.ME18168
Hassen, A. I., Bopape, F. L., & Sanger, L. K. (2016). Microbial inoculants as agents of growth promotion and abiotic stress tolerance in plants. In: D. Singh, H. Singh, R. Prabha (Eds), Microbial inoculants in sustainable agricultural productivity, (pp. 23–36). Springer, New Delhi. https://doi.org/10.1007/978-81-322-2647-5_2
Huang, W. Z. (2024). Boosting soil health: The role of rhizobium in legume nitrogen fixation. Molecular Soil Biology, 15(3), 129-139. https://doi.org/10.5376/msb.2024.15.0014
Jamil, M., Zeb, S., Anees, M., Roohi, A., Ahmed, I., Rehman, S., & Rha, E. S. (2014). Role of Bacillus licheniformis in phytoremediation of nickel contaminated soil cultivated with rice. International journal of phytoremediation, 16(6), 554–571. https://doi.org/10.1080/15226514.2013.798621
Jan, M., Shah, G., Masood, S., Iqbal Shinwari, K., Hameed, R., Rha, E. S., & Jamil, M. (2019). Bacillus Cereus enhanced phytoremediation ability of rice seedlings under cadmium toxicity. BioMed research international, 2019, 8134651. https://doi.org/10.1155/2019/8134651
Kaur, P. & Purewal, S. S. (2019). Biofertilizers and their role in sustainable agriculture. In B. Giri, R. Prasad, Q. S. Wu, & A. Varma (Eds), Biofertilizers for sustainable agriculture and environment, (pp. 285–300), Springer. https://doi.org/10.1007/978-3-030-18933-4_12
Klaunig, J. E., Kamendulis, L. M., & Hocevar, B. A. (2010). Oxidative stress and oxidative damage in carcinogenesis. Toxicologic Pathology, 38(1), 96–109. https://doi.org/10.1177/0192623309356453
Kulkova, I., Dobrzyński, J., Kowalczyk, P., Bełżecki, G., & Kramkowski, K. (2023). Plant growth promotion using Bacillus cereus. International Journal of Molecular Sciences, 24(11), 9759. https://doi.org/10.3390/ijms24119759
Kumar, S. R., David, E. M., Pavithra, G. J., Kumar, G. S., Lesharadevi, K., Akshaya, S., Basavaraddi, C., Navyashree, G., Arpitha, P. S., Sreedevi, P., Zainuddin, K., Firdous, S., Babu, B. R., Prashanth, M. U., Ravikumar, G., Basavaraj, P., Chavana, S. K., Kumar, V. M. L. D., Parthasarathi, T., & Subbian, E. (2024). Methane-derived microbial biostimulant reduces greenhouse gas emissions and improves rice yield. Frontiers in Plant Science. 15, 1432460. https://doi.org/10.3389/fpls.2024.1432460
Lamont, J. R., Wilkins, O., Bywater-Ekegärd, M., & Smith, D. L. (2017). From yogurt to yield: Potential applications of lactic acid bacteria in plant production. Soil Biology and Biochemistry, 111, 1–9. https://doi.org/10.1016/j.soilbio.2017.03.015
Ly, X. N. T., Nguyen, H. P. T., Le, T. T. M., Vo, T. T. B., Le, T. M., Le, Q. T., Nguyen, D. T. X., Le, T. V., & Nguyen, K. Q. (2024) Supplementation of P-solubilizing purple nonsulfur bacteria, Rhodopseudomonas palustris improved soil fertility, P nutrient, growth, and yield of Cucumis melo L. Open Agriculture, 9(1), 20220247. https://doi.org/10.1515/opag-2022-0247
Malyan, S. K., Bhatia, A., Tomer, R., Harit, R. C., Jain, N., Bhowmik, A., & Kaushik, R. (2021). Mitigation of yield-scaled greenhouse gas emissions from irrigated rice through Azolla, Blue-green algae, and plant growth–promoting bacteria. Environmental Science and Pollution Research, 28(37), 51425–51439. https://doi.org/10.1007/s11356-021-14210-z
Minamisawa, K. (2022). Mitigation of greenhouse gas emission by nitrogen-fixing bacteria. Bioscience, Biotechnology, and Biochemistry, 87(1), 7–12. https://doi.org/10.1093/bbb/zbac177
Mohammadi, K., & Sohrabi, Y. (2012). Bacterial biofertilizers for sustainable crop production: A review. ARI Bulletin of Agricultural Research Institute, 1(1), 1–14.
Ngo, P. T., Chau, C. H. T., & Pham, N. T. B. (2024). The effect of Burkholderia vietnamiensis BV2 on IR50404 rice cultivar grown in Binh Minh – Vinh Long. CTU Journal of Science, 60(Natural Sciences), 366-373 (in Vietnamese). https://doi.org/10.22144/ctujos.2024.357
Nguyen, H. T., Tran, D. T., & Nguyen, H. T. (2016). Effectiveness of microbial inoculants for groundnuts grown in marine sandy soil of Nghe An and Binh Dinh provinces. Journal of Vietnam Agricultural Science and Technology, 1(62), 8-13 (in Vietnamese).
Nguyen, K. Q., Le, D. T., Ly, X. N. T., Le, Q. T., & Nguyen, N. K. (2024a). The potential of phosphorus-solubilizing purple nonsulfur bacteria in agriculture: Present and future perspectives. Open Agriculture, 9(1), 20220328. https://doi.org/10.1515/opag-2022-0328
Nguyen, K. Q., Le, T. V., Cao, G. T., Ly, X. N. T., Le, T. T. M., Isao, A., & Ichi, S. J. (2023). Improvement of nutrient uptake, yield of black sesame (Sesamum indicum L.), and alluvial soil fertility in dyke by spent rice straw from mushroom cultivation as biofertilizer containing potent strains of Rhodopseudomonas palustris. The Scientific World Journal, 1, 1954632. https://doi.org/10.1155/2023/1954632
Nguyen, K. Q., Ngo, T. V., Mac, N. K., Ly, X. N. T., Le, T. T. M., Le, Q. T., & Ngo, P. T. (2024b). Potency of endophytic nitrogen-fixing bacteria Burkholderia tropica L-VT08c and Enterobacter cloacae N-VT01 in improving soil fertility and pineapple yield on acid sulfate soil. Scientia Horticulturae, 331, 113153. https://doi.org/10.1016/j.scienta.2024.113153
Nguyen, L. T. M., Le, H. V., Nguyen, T. D., Dinh, V. M., Dinh, H. T., & Nguyen, H. T. (2025). Application of beneficial bacteria to improve agricultural soil quality. Journal of Tropical Science and Engineering, 37, 104-119 (in Vietnamese). https://doi.org/10.58334/vrtc.jtst.n37.10
Nguyen, L. V., & Cao, D. N. (2012). Effect of biofertilizer on yield of vegetables (fruit-eating vegetable) cultivated on alluvial soil of Omon district, Can Tho city. CTU Journal of Science, 23a, 213-223 (in Vietnamese).
Nguyen, N. K., Huynh, H. H., Dang, N. T. Y., Nguyen, O. T. K., & Le, X. T. (2022). Efficacy of NPISi microbial product on growth, yield of green onion (Allium fistulosum) and some alluvial soil characteristics under greenhouse conditions. CTU Journal of Science, 58(3B), 176-190 (in Vietnamese). https://doi.org/10.22144/ctu.jvn.2022.079
Pei, B., Liu, T., Xue, Z., Cao, J., Zhang, Y., Yu, M., Liu, E., Xing, J., Wang, F., Ren, X., & Zhang, Z. (2025). Effects of biofertilizer on yield and quality of crops and properties of soil under field conditions in China: A meta-analysis. Agriculture, 15(10), 1066. https://doi.org/10.3390/agriculture15101066
Pham, T. V. (2005). Research on technology and production of new multi-strain microbial fertilizers and functional fertilizers for cultivation and planting in some ecological regions (Summary Report on Science and Technology). Vietnam Academy of Agricultural Sciences (in Vietnamese).
Prashar, D., Singh, A., Dhama, V., Singh, P. K., Kumar, M., Kumar, S., Pandey, D., & Verma, G. (2025). Effect of organic and inorganic fertilizers on crop yield and soil fertility: A comprehensive review. Journal of Experimental Agriculture International, 47(2), 16–22. https://doi.org/10.9734/jeai/2025/v47i23261
Qin, H., Wang, Z., Sha, W., Song, S., Qin, F., & Zhang, W. (2024). Role of plant-growth-promoting rhizobacteria in plant machinery for soil heavy metal detoxification. Microorganisms, 12(4), 700. https://doi.org/10.3390/microorganisms12040700
Rashid, M. I., Mujawar, L. H., Shahzad, T., Almeelbi, T., Ismail, I. M. I., & Oves, M. (2016). Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiological Research, 183, 26-41. https://doi.org/10.1016/j.micres.2015.11.007
Sarkar, A., Ghosh, P.K., Pramanik, K.; Mitra, S., Soren, T.; Pandey, S., Mondal, M.H. & Maiti, T.K. (2018). A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res. Microbiol., 169, 20–32. https://doi.org/10.1016/j.resmic.2017.08.005
Singh, P., Chauhan, P. K., Upadhyay, S. K., Singh, R. K., Dwivedi, P., Wang, J., Jain, D., & Jiang, M. (2022a). Mechanistic insights and potential use of siderophores producing microbes in rhizosphere for mitigation of stress in plants grown in degraded land. Frontiers in microbiology, 13, 898979. https://doi.org/10.3389/fmicb.2022.898979
Singh, R. P., Ma, Y., & Shadan, A. (2022b). Perspective of ACC-deaminase producing bacteria in stress agriculture. J. Biotechnol., 352, 36–46. https://doi.org/10.1016/j.jbiotec.2022.05.002
Soils and Fertilizers Institute (SFI). (2021). Analysis and evaluation of measures for using organic fertilizers and microbial organic fertilizers in agricultural production. https://sfri.org.vn/chi-tiet-tin/323/phan-tich-danh-gia-bien-phap-su-dung-phan-huu-co-va-phan-huu-co-vi-sinh-trong-san-xuat-nong-nghiep (in Vietnamese).
Sun, W., Shahrajabian, M. H., & Soleymani, A. (2024). The roles of plant-growth-promoting Rhizobacteria (PGPR)-Based biostimulants for agricultural production systems. Plants, 13(5), 613. https://doi.org/10.3390/plants13050613
Tan, M., Feng, T., Wang, C., Hao, X., & Yu, H. (2025). Effects of microbial agents on soil improvement-A review and bibliometric Analysis. Agronomy, 15(5), 1223. https://doi.org/10.3390/agronomy15051223
Tran, C. V., Bui, H. V., Le, L. T. B., Nguyen, H. X., Pham, H. Q., & Bien, M. V. (2018). Textbook of environmental microbiology. Hanoi Polytechnic Publishing House (in Vietnamese).
Tran, D. T., Vo, T. T., Dao, T. V., & Vo, H. C. (2017). Completion of production technology of functional micro-products supplemented with biochar. Journal of Vietnam Agricultural Science and Technology, 10(83), 84-91 (in Vietnamese).
Tran, H. N., Tran, G. T. N., Phan, N. N., Chan, V. T. B., & Nguyen, K. Q. (2022). Potential of phosphorus solubilizing purple nonsulfur bacteria isolated from acid sulfate soil in improving soil property, nutrient uptake, and yield of pineapple (Ananas comosus L. Merrill) under acidic stress. Applied and Environmental Soil Science, 1, 8693479. https://doi.org/10.1155/2022/8693479
Tripathi, A., Pandey, M., & Sharma, P. (2022). A review: Effects of nitrogenous fertilizers on soil (pH, microbial community, greenhouse gases emission and carbon pool). Environmental Contaminants Reviews, 5(2), 44-48. http://doi.org/10.26480/ecr.02.2022.44.48
VAAS. (2024). Increasing the use of organic fertilizers, relieving pressure on environmental pollution. https://vaas.vn/vi/nong-nghiep-trong-nuoc/gia-tang-su-dung-phan-bon-huu-co-giai-toa-nhung-ap-luc-ve-o-nhiem-moi-truong (in Vietnamese).
Vassileva, M., Malusà, E., Sas-Paszt, L., Trzcinski, P., Galvez, A., Flor-Peregrin, E., Shilev, S., Canfora, L., Mocali, S., & Vassilev, N. (2021). Fermentation strategies to improve soil bio-inoculant production and quality. Microorganisms, 9(6), 1254. https://doi.org/10.3390/microorganisms9061254
Vietnam Academy of Agricultural Sciences (VAAS). (2020). Report on the investigation of the current status of fertilizer use in key crop growing areas. Agricultural Publishing House (in Vietnamese).
Vu, L. V., Chau, E. T. H., Le, T. B. T., Chan, D. V., & Nguyen, N. K. (2024). Effects of combined nitrogen-fixing bacteria (Gluconacetobacter diazotrophicus) with nitrogen fertilization on the growth and rice yield. Vietnam Soil Science, 75, 27-31 (in Vietnamese).
Wang, Y., Peng, S., Hua, Q., Qiu, C., Wu, P., Liu, X. & Lin, X. (2021). The long-term effects of using phosphate-solubilizing bacteria and photosynthetic bacteria as biofertilizers on peanut yield and soil bacteria community. Front. Microbiol, 12, 693535. https://doi.org/10.3389/fmicb.2021.693535
Wei, X., Xie, B., Wan, C., Song, R., Zhong, W., Xin, S., & Song, K. (2024). Enhancing soil health and plant growth through microbial fertilizers: Mechanisms, benefits, and sustainable agricultural practices. Agronomy, 14(3), 609. https://doi.org/10.3390/agronomy14030609
Xu, P. & Wang, E. (2023). Diversity and regulation of symbiotic nitrogen fixation in actinorhizal and legume symbioses. Current Biology, 33(11), R543-R559. https://doi.org/10.1016/j.cub.2023.04.053
Zhang, L., Zhao, Z., Jiang, B., Baoyin, B., Cui, Z., Wang, H., Li, Q., & Cui, J. (2024a). Effects of long-term application of nitrogen fertilizer on soil acidification and biological properties in China: A meta-analysis. Microorganisms, 12(8), 1683. https://doi.org/10.3390/microorganisms12081683
Zhang, X., Wu, J., & Kong, Z. (2024b). Cellular basis of legume–rhizobium symbiosis. Plan communication, 5(11), 101045. https://doi.org/10.1016/j.xplc.2024.101045
Zhang, X., Davidson, E. A., Mauzerall, D. L., Searchinger, T. D., Dumas, P., & Shen, Y. (2019). Managing nitrogen for sustainable development. Nature, 528(7580), 51–59. https://doi.org/10.1038/nature15743
Zhou, J., Jiang, X., Wei, D., Zhao, B., Ma, M., Chen, S., Cao, F., Shen, D., Guan, D., & Li, J. (2017). Consistent effects of nitrogen fertilization on soil microbial communities in black soils for two crop seasons. Scientific Reports, 7, 3267. https://doi.org/10.1038/s41598-017-03539-6