Investigation of the antioxidant, anti-inflammatory and antibacterial activities of Blumea lacera
Abstract
The purpose of this study is to quantify the chemical composition and biological activity of extracts from the aerial parts (stem and leaf), stem extract, and leaf extract of Blumea lacera. Antioxidant activity was evaluated using the 2,2-diphenyl-1-picrylhydrazyl, nitric oxide, total antioxidant capacity, ferric reducing-antioxidant power and 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid). Anti-inflammatory activity was measured by its ability to protect red blood cell membranes and inhibit denaturation of bovine serum albumin. The antibacterial activity was assessed by measuring the antibacterial ring diameter, the minimum inhibitory concentration, and the minimum bactericidal concentration. Blumea lacera leaf extract exhibits stronger antioxidant and anti-inflammatory activities than the other extracts. Blumea lacera extracts inhibit Gram-positive bacteria more effectively than Gram-negative bacteria, with minimum bactericidal doses of 250 to 2000 µg/mL. Blumea lacera extracts have antioxidant, anti-inflammatory, and antibacterial properties due to the presence of polyphenols, flavonoids, and alkaloids. These findings demonstrated the potential of Blumea lacera extracts as natural antioxidants, anti-inflammatory, and antibacterial agents.
Tóm tắt
Mục đích của nghiên cứu này là định tính thành phần hóa học và hoạt tính sinh học của cao từ phần trên mặt đất (thân và lá), cao thân, cao lá cải trời (CT). Hoạt tính kháng oxy hóa (KOH) được đánh giá bằng phương pháp 2,2-diphenyl-1-picrylhydrazyl, nitric oxide, kháng oxy hóa tổng số và tiềm năng khử và 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid). Hoạt tính kháng viêm (KV) được đo bằng khả năng bảo vệ màng tế bào hồng cầu và ức chế sự biến tính của albumin huyết thanh bò. Hoạt tính kháng khuẩn (KK) được đánh giá bằng cách đo đường kính vòng kháng khuẩn, nồng độ ức chế tối thiểu và nồng độ diệt khuẩn tối thiểu. Cao lá CT thể hiện hoạt động KOH và KV mạnh hơn các cao chiết còn lại. Các cao CT ức chế vi khuẩn Gram dương hiệu quả hơn vi khuẩn Gram âm, với liều diệt khuẩn tối thiểu từ 250 đến 2000 µg/mL. Các cao CT có đặc tính KOH, KV, KK do sự hiện diện của polyphenol, flavonoid và alkaloid. Những phát hiện này đã chứng minh tiềm năng của CT như chất KOH, KV, KK tự nhiên.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Ashrafi, S., Alam, S., Islam, A., Emon, N. U., Islam, Q. S., & Ahsan, M. (2022). Chemico-biological profiling of Blumea lacera (Burm.f.) DC. (Family: Asteraceae) provides new insights as a potential source of antioxidant, cytotoxic, antimicrobial, and antidiarrheal agents. Evidence-Based Complementary and Alternative Medicine, 12, 2293415. https://doi.org/10.1155/2022/2293415
Ayukekbong, J. A., Ntemgwa, M. & Atabe, A. N. (2017). The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrobial Resistance & Infection Control, 6, 47. https://doi.org/10.1186/s13756-017-0208-x
Bag, G. C., Devi, P. G., & Bhaigyabati, T. (2015). Assessment of total flavonoid content and antioxidant activity of methanolic rhizome extract of three Hedychium species of Manipur Valley. International Journal of Pharmaceutical Sciences Review and Research, 30(1), 154-159. http://globalresearchonline.net/journalcontents/v30-1/28.pdf
Basak, S., Singh, P., & Rajurkar, M. (2016). Multidrug resistant and extensively drug resistant bacteria: A study. Journal of Pathogens, 2016, 5. https://doi.org/10.1155/2016/4065603.4065603
Benzie, L. F. F. & Strain. J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of ‘atioxidant power: The FRAP assay. Analytical Biochemistry, 239, 70-76. https://doi.org/10.1006/abio.1996.0292
Bộ Y Tế (2018). Dược điển Việt Nam V. Nhà xuất bản Y học.
Chaity, F. R., Khatun, M., & Rahman, M.S. (2016). In vitro membrane stabilizing, thrombolytic and antioxidant potentials of Drynaria quercifolia L., a remedial plant of the Garo tribal people of Bangladesh. BMC Complementary Medicine and Therapies, 16, 184-193. https://doi.org/10.1186/s12906-016-1170-5
Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., & Zhao, L. (2017). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6), 7204-7218. https://doi.org/10.18632/oncotarget.23208
Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D. W., Fasano, A., & Miller, G. W. (2019). Chronic inflammation in the etiology of disease across the life span. Nature Medicine, 25, 1822-1832. https://doi.org/10.1038/s41591-019-0675-0
Hộ, P. H. (2000). Cây cỏ Việt Nam. Nhà xuất bản Trẻ, Thành phố Hồ Chí Minh.
Hossen, M. A., Ali Reza, A. S. M., Amin M. B., Nasrin, M. S., Khan, T. A., Rajib, M. H. R., & Haque, M. A. (2021). Bioactive metabolites of Blumea lacera attenuate anxiety and depression in rodents and computer‐aided model. Food Science & Nutrition, 9(7), 3836-3851. https://doi.org/10.1002/fsn3.2362
Iskandar, K., Murugaiyan, J., Hammoudi, H. D., Hage, S. E., Chibabhai, V., Adukkadukkam, S., Roques, C., Molinier, L., Salameh, P., & Van, D. M. (2022). Antibiotic discovery and resistance: The chase and the race. Antibiotics (Basel), 11(2), 182. https://doi.org/10.3390/antibiotics11020182
Jan, R., Asaf, S., Numan, M., & Lubna, K. K. -M. (2021). Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy, 11, 968-999. https://doi.org/10.3390/ agronomy11050968
Khair, M. A., Ibrahim, M., Ahsan, Q., Kuddus, M. R., Rashid, R. B., & Rashid, M. A. (2015). Preliminary phytochemical screenings and pharmacological activities of Blumea lacera (Burn. f.) DC. Dhaka University Journal of Pharmaceutical Sciences, 13(1), 69-73. https://doi.org/10.3329/dujps.v13i1.21863
Khandekar, U., Tippat, S., & Hongade, R. (2013). Investigation on antioxidant, anti-microbial and phytochemical profile of Blumea lacera leaf. International Journal of Biological & Pharmaceutical Research, 4, 756-761. https://www.researchgate.net/publication/269108291
Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8), 118-126. https://doi.org/10.4103/0973-7847.70902
Nenadis, N., Wang, L. F., Tsimidou, M., & Zhang, H. I. (2004). Estimation of scavenging activity of phenolic compounds using the ABTS•+ assay. Journal of Agricultural and Food Chemistry, 52(15), 4669-4674. https://doi.org/10.1021/jf0400056
Ngan, L. T., Moon, J. K., Kim, J. H., Shibamoto, T., & Ahn, Y. J. (2012). Growth-inhibiting effects of Paeonia lactiflora root steam distillate constituents and structurally related compounds on human intestinal bacteria. World Journal of Microbiology and Biotechnology, 28(4), 1575-1583. https://doi.org/10.1007/s11274-011-0961-6
Phụng, N. K. P. (2007). Phương pháp cô lập hợp chất hữu cơ. Nhà xuất bản Đại học Quốc gia Tp. Hồ Chí Minh.
Poulsen-Silva, E., Gordillo-Fuenzalida, F., Velásquez, P., Llancalahuen, F. M., Carvajal, R., Cabaña-Brunod, M., & Otero, M. C. (2023). Antimicrobial, antioxidant, and anti-inflammatory properties of monofloral honeys from Chile. Antioxidants, 12, 1785. https://doi.org/10.3390/antiox12091785
Prieto, P., Pineda, M. & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of phosphomolybdenum complex: Specific application for the determination of Vitamin E. Analytical Biochemistry, 269(2), 337-341. https://doi.org/10.1006/abio.1999.4019
Rathod, N. B., Elabed, N., Punia, S., Ozogul, F., Kim, S. K., & Rocha, J. M. (2023). recent developments in polyphenol applications on human health: A review with current knowledge. Plants (Basel), 12(6), 1217. https://doi.org/10.3390/plants12061217
Satyal, P., Chhetri, B. K., Dosoky, N. S., Shrestha, S., Poudel, A., & Setzer, W. N. (2015). Chemical composition of Blumea lacera essential oil from Nepal. Biological activities of the essential oil and (Z)-Lachnophyllum ester. Natural Product Communications, 10(10), 1749-1750. https://doi.org/10.1177/1934578X1501001028
Shah, M., Parveen, Z., Khan, M. R. (2017). Evaluation of antioxidant, antiinflammatory, analgesic and antipyretic activities of the stem bark of Sapindus mukorossi. BMC Complementary and Alternative Medicine, 17, 526-532. https://doi.org/10.1186/s12906-017-2042-3
Shamsa, F., Monsef, H., Ghamooshi, R., & Verdian-rizi, M. (2008). Short report spectrophotometric determination of total alkaloids in some Iranian medicinal plants. Thai Journal of Pharmaceutical Sciences, 32, 17-20. https://www.thaiscience.info/journals/Article/TJPS/10576423.pdf
Sharma, O. P. & Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food Chemistry, 113, 1202-1205. https://doi.org/10.1016/j.foodchem.2008.08.008
Singh, S. P & Mittal, P. K. (2014). Mosquito repellent action of Blumea lacera (Asteraceae) against Anopheles stephensi and Culex quinquefasciatus. International Journal ò Mosquito Research, 1(1), 10-13. https://www.dipterajournal.com/vol1issue1/5.1.html
Singleton, V. L., Orthofer, R., & Lamuela–Raventos, R. M. (1999). Analysis of total phenol and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol, 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
Sreejayan, N. & Rao, M. N. A. (1997). Nitric oxide scavenging by curcuminoids. Journal of Pharmacy and Pharmacology, 49, 105-107. https://doi.org/10.1111/j.2042-7158.1997.tb06761.x
Thawabteh, A., Juma, S., Bader, M., Karaman, D., Scrano, L., Bufo, S. A., & Karaman, R. (2019). The Biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins (Basel), 11(11), 656. https://doi.org/10.3390/toxins11110656
Twaij, B. M., & Hasan, M. N. (2022). Bioactive secondary metabolites from plant sources: Types, synthesis, and their therapeutic uses. International Journal of Plant Biology, 13, 4-14. https:// doi.org/10.3390/ijpb13010003
Ullah, A., Munir, S., Badshah, S. L., Khan, N., Ghani, L., Poulson, B. G., & Jaremko, M. (2020). Important flavonoids and their role as a therapeutic agent. Molecules, 25(22), 5243. https://doi.org/10.3390/molecules25225243
Wahyuningsih, S. P. A., Savira, N. I. I., Anggraini, D. W., Winarni, D., Suhargo, L., Kusuma, B. W. A., & Mwendolwa, A. A. (2020). Antioxidant and nephroprotective effects of okra pods extract (Abelmoschus esculentus L.) against lead acetate-induced toxicity in mice. Scientifica, 2020, 1-10. https://doi.org/10.1155/2020/4237205
Yeshi, K., Crayn, D., Ritmejerytė, E., Wangchuk, P. (2022). Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules, 27(1), 313. https://doi.org/10.3390/molecules27010313