Effect of replacing jackfruit leaves silage for fresh Elephant grass on in vitro nutrient digestibility, ruminal fermentation and methane production in dairy goats
Abstract
The experiment was conducted to evaluate the effects of substituting jackfruit leaves silage for fresh Elephant grass on in vitro digestibility, ruminal fermentation and methane (CH4) production using ruminal fluid from dairy Saanen crossbred goats. The experiment was designed as a completely randomized model with 5 treatments (T), which were the substitution of fresh Elephant grass with silage jackfruit leaves at levels of 0, 25, 50, 75, and 100% DM, corresponding to LMU0, LMU25, LMU50, LMU75, and LMU100, respectively. Increasing the rate of jackfruit leaves silage increased the proportion of acetate and reduced the proportion of propionate (P<0.001), but had no effect on total VFA content. The digestibility of DM and NDF was highest at LMU0 and lowest at LMU100 (P<0.05). Compared to LMU0, LMU100 reduced methane volume by 38.6% and CO2 volume by 41.6% (P<0,.01). Combined data suggests that increasing the substitution of jackfruit leaves silage for fresh Elephant grass remarkably reduced methane production and nutrient digestibility. Moreover, the formation of fermentation patterns was also altered when jackfruit leaves silage was added.
Tóm tắt
Thí nghiệm được tiến hành nhằm đánh giá ảnh hưởng của thay thế lá mít ủ chua cho cỏ Voi tươi lên tỷ lệ tiêu hóa, lên men dạ cỏ và sinh khí methane (CH4) in vitro sử dụng dịch dạ cỏ dê Saanen lai. Thí nghiệm được thiết kế hoàn toàn ngẫu nhiên với 5 nghiệm thức (NT) là sự thay thế cỏ Voi tươi bởi lá mít ủ chua ở các mức 0, 25, 50, 75 và 100% DM, tương ứng với LMU0, LMU25, LMU50, LMU75 và LMU100. Kết quả cho thấy việc tăng các mức độ lá mít ủ chua làm tăng tỷ lệ acetate và giảm propionate (P<0,001), nhưng không ảnh hưởng đến VFA tổng số. Tỷ lệ tiêu hóa DM và NDF cao nhất ở LMU0 và thấp nhất ở LMU100 (P<0,05). LMU100 làm giảm 38,6% lượng khí CH4 và 41,6% lượng khí CO2 sinh ra, khi so với LMU0 (P<0,01). Kết quả thí nghiệm cho thấy tăng tỷ lệ lá mít ủ chua thay thế cho cỏ Voi tươi làm giảm mạnh mẽ sự sinh khí methane, giảm tỷ lệ tiêu hóa dưỡng chất, và thay đổi tỷ lệ hình thành các sản phẩm lên men.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Abate, A. L., & Mayer, M. (1997). Prediction of the useful energy in tropical feeds from proximate composition and in vivo derived energetic contents 1. Metabolisable energy. Small Ruminant Research, 25(1), 51-59. https://doi.org/10.1016/S0921-4488(96)00959-5
AOAC (1990). Official Methods of Analyses. Washington, D.C.: Association of Official Analytical Chemists.
Battelli, M., Colombini, S., Crovetto, G., Galassi, G., Abeni, F., Petrera, F., Manfredi, M., & Rapetti, L. (2024). Condensed tannins fed to dairy goats: effects on digestibility, milk production, blood parameters, methane emission, and energy and nitrogen balances. Journal of Dairy Science (article in press). https://doi.org/10.3168/jds.2023-24076
Bueno, I. C., Brandi, R. A., Fagundes, G. M., Benetel, G., & Muir, J. P. (2020). The role of condensed tannins in the in vitro rumen fermentation kinetics in ruminant species: feeding type involved? Animals, 10(4), 635. https://doi.org/10.3390/ani10040635
Chen, L., Bao, X., Guo, G., Huo, W., Li, Q., Xu, Q., Wang, C., & Liu, Q. (2022). Evaluation of gallnut tannin and Lactobacillus plantarum as natural modifiers for alfalfa silage: Ensiling characteristics, in vitro ruminal methane production, fermentation profile and microbiota. Journal of Applied Microbiology, 132(2), 907-918. https://doi.org/10.1111/jam.15246
Costa, M. N., Alves, S. P., Cappucci, A., Cook, S. R., Duarte, A., Caldeira, R. M., McAllister, T. A., & Bessa, R. J. (2018). Effects of condensed and hydrolyzable tannins on rumen metabolism with emphasis on the biohydrogenation of unsaturated fatty acids. Journal of agricultural and food chemistry, 66(13), 3367-3377. https://doi.org/10.1021/acs.jafc.7b04770
de Sant'ana, A. S., Silva, A. P. R., do Nascimento, S. P. O., Moraes, A. A., Nogueira, J. F., Bezerra, F. C. M., da Costa, C. F., de Simoni Gouveia, J. J., Gouveia, G. V., de Souza Rodrigues, R. T., Bonfa, H. C., & Menezes, D. R. (2022). Tannin as a modulator of rumen microbial profile, apparent digestibility and ingestive behavior of lactating goats: A preliminary metagenomic view of goats adaptability to tannin. Research in Veterinary Science, 145, 159-168. https://doi.org/10.1016/j.rvsc.2022.02.002
Dijkstra, J., Ellis, J., Kebreab, E., Strathe, A., López, S., France, J., & Bannink, A. (2012). Ruminal pH regulation and nutritional consequences of low pH. Animal Feed Science and Technology, 172(1-2), 22-33. https://doi.org/10.1016/j.anifeedsci.2011.12.005
Guerreiro, O., Alves, S. P., Costa, M., Duarte, M. F., Jerónimo, E., & Bessa, R. J. (2021). Effects of increasing doses of condensed tannins extract from Cistus ladanifer L. on in vitro ruminal fermentation and biohydrogenation. Animals, 11(3), 761. https://doi.org/10.3390/ani11030761
Hiltner, P., & Dehority, B. A. (1983). Effects of soluble carbohydrates on diction of cellulose by pure cultures of rumen bacteria. Applied Microbiology and Biotechnology, 46(3), 642-648.
https://doi.org/10.1128/aem.46.3.642-648.1983
Kha, P. T. T., Tham, H. T, Hang, T. T. T., & Thanh, L. P. (2020). Effects of oils and condensed tannins on ruminal fermentation and methane emission in dairy cows, The 3rd International Conference on Sustainable Agriculture and Environment (pp. 182-191). Nhà xuất bản Đại học Quốc Gia TP. Hồ Chí Minh.
Kouch, T., Preston, T. R., & Ly, J. (2003). Studies on utilization of trees and shrubs as the sole feedstuff by growing goats; foliage preferences and nutrient utilization. Livestock Research for Rural Development, 15(7).
Ku-Vera, J. C., Jiménez-Ocampo, R., Valencia-Salazar, S. S., Montoya-Flores, M. D., Molina-Botero, I. C., Arango, J., Gómez-Bravo, C. A., Aguilar-Pérez, C. F., & Solorio-Sánchez, F. J. (2020). Role of secondary plant metabolites on enteric methane mitigation in ruminants. Frontiers in Veterinary Science, 7, 584. https://doi.org/10.3389/fvets.2020.00584
Lileikis, T., Nainienė, R., Bliznikas, S., & Uchockis, V. (2023). Dietary Ruminant Enteric Methane Mitigation Strategies: Current Findings, Potential Risks and Applicability. Animals, 13(16), 2586. https://doi.org/10.3390/ani13162586
Malik, P. K., Kolte, A. P., Baruah, L., Saravanan, M., Bakshi, B., & Bhatta, R. (2017). Enteric methane mitigation in sheep through leaves of selected tanniniferous tropical tree species. Livestock Science, 200, 29-34. https://doi.org/10.1016/j.livsci.2017.04.001
Menke, K. H., & Steingass, H. (1998). Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Animal Research and Development, 28, 7-55.
Nair, M. R., Sejian, V., Silpa, M., Fonsêca, V., de Melo Costa, C., Devaraj, C., Krishnan, G., Bagath, M., Nameer, P., & Bhatta, R. (2021). Goat as the ideal climate-resilient animal model in tropical environment: revisiting advantages over other livestock species. International Journal of Biometeorology, 65, 2229-2240. https://doi.org/10.1007/s00484-021-02179-w
Tan, H. Y., Sieo, C. C., Abdullah, N., Liang, J. B., Huang, X. D., & Ho, Y. W. (2011). Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Animal Feed Science and Technology, 169(3-4), 185-193. https://doi.org/10.1016/j.anifeedsci.2011.07.004
Thanh, L. P., Ha, N. T. T., & Hang, T. T. T. (2020). Combination of oil and grape seed proanthocyanidin extract strongly depresses methane production in dairy goats. The Third International Conference on Sustainable Agriculture and Environment Ho Chi Minh City, Vietnam, 219-227
Thanh, L. P., Kha, P. T. T., & Hang, T. T. T. (2022). Jackfruit leaves can totally replace traditional grass in the diet of lactating dairy goats. Journal of Applied Animal Research, 50(1), 97-102. https://doi.org/10.1080/09712119.2022.2035734
Thanh, L. P., Kha, P. T. T., Ha, N. T. T., Mai, D. T. T., Tu, M. H., & Hang, T. T. T. (2023). Effect of oil and tannin supplementation on intake, milk yield and milk composition of dairy cows. Veterinary Integrative Sciences, 21(3), 799-808. https://doi.org/10.12982/VIS.2023.056
Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Symposium: Carbohydrate methodology, metabolism and nutritional implications in dairy cattle: Methods for dietary fibre, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3585-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Van, D. T. T., Mui, N. T., & Ledin, I. (2005). Tropical foliages: effect of presentation method and species on intake by goats. Animal Feed Science and Technology, 118 (1-2), 1-17. https://doi.org/10.1016/j.anifeedsci.2004.10.016
Viện Chăn nuôi Quốc gia. (1995). Thành phần và giá trị dinh dưỡng thức ăn gia súc, gia cầm Việt Nam. Nhà xuất bản Nông nghiệp.
Thành, L. P., Hà N. T. T., Mai D. T. T., Tiên, V. T. P., Vân, N. C. K. & Hằng, T. T. T. (2021). Ảnh hưởng của lá mít và trái mít non phụ phẩm đến các thông số lên men dạ cỏ và sinh khí methane in vitro. Tạp chí Khoa học Trường Đại học Cần Thơ, 57(6B), 108-114. https://doi.org/10.22144/ctu.jvn.2021.177
Van Soest, P., & Robertson, J. B. (1985). A Laboratory Manual for Animal Science. Cornell University.
https://doi.org/10.3168/jds.S0022-0302(91)78551-2.
Van Soest, P. V., Robertson, J. B., & Lewis, B. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3597