Effect of temperature on the cell disruption process of yeast extract obtained for food use
Abstract
The extract derived from Saccharomyces cerevisiae yeast cells is a nutritional product extensively utilized in the food industry. This method employs high-temperature autolysis of yeast cells to produce safe and enhanced flavor food products. The yeast cells were activated at 50°C for 120 minutes and subsequently autoclaved at varying temperatures and durations. The cell lysate was rapidly cooled to room temperature and centrifuged to obtain the supernatant. The yeast extract was then spray-dried to produce a powdered product with a moisture content of 6.7%. The resulting yeast extract powder exhibited a protein content of 52.1%, a protein recovery efficiency of 71.28%, and an amino acid content of 3.7% when yeast cells were lysed at 115°C for 10 minutes. Sensory evaluation results indicated that when yeast extract powder was added to cabbage vegetable broth at a concentration of 0.3-0.6%, it achieved an average sensory score of 8.36-8.55 (on a 9-point scale) and was classified in the most favored group, with no statistically significant difference compared to chicken broth (p> 0.05).
Tóm tắt
Chiết xuất thu nhận từ tế bào nấm men Saccharomyces cerevisiae là sản phẩm dinh dưỡng được dùng rộng rãi trong công nghiệp thực phẩm. Phương pháp sử dụng quá trình phá vỡ tế bào nấm men bằng nhiệt độ cao tạo ra sản phẩm an toàn và làm tăng hương vị của các sản phẩm thực phẩm. Tế bào nấm men được hoạt hóa ở 50oC trong 120 phút, sau đó hấp ở nhiệt độ và thời gian nghiên cứu khác nhau. Dịch tế bào được làm lạnh nhanh về nhiệt độ phòng và ly tâm thu dịch nổi. Dịch chiết xuất nấm men được sấy phun thu sản phẩm dạng bột có độ ẩm 6,7%. Bột chiết xuất nấm men thu được có hàm lượng protein là 52,1%, hiệu suất thu hồi protein là 71,28% và hàm lượng amino acid là 3,7% khi tế bào nấm men bị phá vỡ ở điều kiện 115oC trong 10 phút. Kết quả đánh giá cảm quan thị hiếu khi bổ sung bột chiết xuất nấm men vào nước luộc rau bắp cải với tỷ lệ 0,3-0,6% cho điểm cảm quan trung bình về mùi vị thuộc nhóm được yêu thích nhất là 8,36-8,55 (theo thang điểm 9) và không có khác biệt thống kê có ý nghĩa so với nước hầm gà (p> 0,05).
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Alves, E. M., Souza, J. F., & Oliva Neto, P. D. (2021). Advances in yeast autolysis technology - A faster and safer new bioprocess. Brazilian Journal of Food Technology, 21, e2020249. https://doi.org/10.1590/1981-6723.24920
Association of Official Agricultural Chemists - AOAC. (2000). Official methods of analysis (17th ed.). Gaithersburg: Horwitz W.
Alim, A., Yang, C., Song, H., Liu, Y., Zou, T., Zhang, Y., & Zhang, S. (2019). The behavior of umami components in thermally treated yeast extract. Food Research International, 120, 534-543. https://doi.org/10.1016/j.foodres.2018.11.002
Baird, R. B., Eaton, A. D., & Rice, E. W. (2017). Standard methods for the examination of water and wastewater (23nd ed.). Washington, DC: APHA.
Bzducha-Wróbel, Anna, Stanisław Błażejak, Anna Kawarska, Lidia Stasiak-Różańska, Iwona Gientka, and Ewa Majewska. (2014). "Evaluation of the Efficiency of Different Disruption Methods on Yeast Cell Wall Preparation for β-Glucan Isolation". Molecules, 19(12), 20941-20961. https://doi.org/10.3390/molecules191220941
Dimopoulos, G., Tsantes, M., & Taoukis, P. S. (2020). Effect of highpressure homogenization on the production of yeast extract via autolysis and beta-glucan recovery. Innovative Food Science & Emerging Technologies, 62(5), 102340. https://doi.org/10.1016/j.ifset.2020.102340
Farzana, T., Mohajan, S., Saha, T., Hossain, M. N., & Haque, M. Z. (2017). Formulation and nutritional evaluation of a healthy vegetable soup powder supplemented with soy flour, mushroom, and moringa leaf. Food Science & Nutrition, 5(4), 911-920.
https://doi.org/10.1002/fsn3.476
Friedman, M. (2004). Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences. Journal of Agricultural and Food Chemistry, 52(3), 385-406. https://doi.org/10.1021/jf030490p
Liu, D., Ding, L., Sun, J., Boussetta, N., & Vorobiev, E. (2016). Yeast cell disruption strategies for recovery of intracellular bio-active compounds - A review. Innovative Food Science & Emerging Technologies, 36, 181-192. https://doi.org/10.1016/j.ifset.2016.06.017
Munch, P., Hofmann, T., & Schieberle, P. (1997). Comparison of key odorants generated by thermal treatment of commercial and self-prepared yeast extracts: Influence of the amino acid composition on odorant formation. Journal of Agricultural and Food Chemistry, 45, 1338-1344.
https://doi.org/10.1021/jf960658p
Khan, M. A, Javed, M. M.., Ahmed, A., Zahoor, S., & Iqbal, K. (2020). Process optimization for the production of yeast extract using fresh baker’s yeast. Pakistan Journal of Biochemistry and Biotechnology, 1(2),1-10. https://doi.org/10.3390/molecules191220941
Tanguler, H., & Erten, H. (2008). Utilisation of spent brewer’s yeast for yeast extract production by autolysis: The effect of temperature. Food and Bioproducts Processing, 86(4), 317-321. https://doi.org/10.1016/j.fbp.2007.10.015
Takalloo, Z., Nikkhah, M., Nemati, R., Jalilian, N., & Sajedi, R. H. (2020). Autolysis, plasmolysis and enzymatic hydrolysis of baker’s yeast (Saccharomyces cerevisiae): A comparative study. World Journal of Microbiology and Biotechnology, 36(5), 68. https://doi.org/10.1007/s11274-020-02840-3