Structure-base DNA-targeting strategies with chalcone derivaties containing heterocyclic moiety as potential anti-cancer agents
Abstract
Chalcone scaffolds play an important role in anticancer drug design. In this article, the chalcone derivatives containing heterocyclic moiety (quinazolinone, benzimidazole, benzoxazole and 1,3,4-oxadiazole) with potential anticancer activity have been reviewed on the prediction of DNA-binding. Compounds provided excellent results for DNA intercalation, compared with those of the standard at a molecular level. Molecular dynamics simulations were performed for the top four docked complexes, which indicated the structural stability of the DNA–ligand complexes. ADMET prediction was also performed for the top ligands. In summary, this study encouraged the synthesis of designed compounds and the study of their in vitro DNA interactive ability and cytotoxicity. This class of compounds might be helpful for the development of new and potential multi-target anticancer agents or drugs in the future.
Tóm tắt
Khung sườn chalcone đóng vai trò quan trọng trong công cuộc thiết kế các loại thuốc chống ung thư. Trong nghiên cứu này, các dẫn xuất chalcone chứa hợp chất dị vòng là quinazolinone, benzimidazole, benzoxazole và 1,3,4-oxadiazole với hoạt tính chống ung thư tiềm năng đã được xem xét về khả năng gắn kết với DNA. Các hợp chất cho kết quả xen kẽ vào DNA chặt so với hợp chất đối chứng trên phương diện cấp độ phân tử. Mô phỏng động lực học đã được thực hiện cho bốn phức hợp tốt nhất, kết quả cho thấy sự ổn định về cấu trúc đã được gắn kết ở các phức hợp phối tử-DNA. Dự đoán về ADMET cũng đã được thực hiện cho các phối tử này. Tóm lại, nghiên cứu này khuyến khích tổng hợp các hợp chất chalcone chứa dị vòng, nghiên cứu khả năng tương tác với DNA và hiệu quả gây độc tế bào của chúng bằng các mô hình thực nghiệm in vitro. Nhóm hợp chất này có thể hữu ích cho việc phát triển các tác nhân hoặc thuốc chống ung thư đa mục tiêu mới và tiềm năng trong tương lai.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Abou-Zied, H. A., Youssif, B. G. M., Mohamed, M. F. A., Hayallah, A. M., & Abdel-Aziz, M. (2019). EGFR inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and docking studies of novel xanthine derivatives carrying chalcone moiety as hybrid molecules. Bioorganic Chemistry, 89, 102997. https://doi.org/10.1016/j.bioorg.2019.102997
Allen, S. L., & Lundberg, A. S. (2011). Amonafide: A potential role in treating acute myeloid leukemia. Expert Opinion on Investigational Drugs, 20(7), 995–1003. https://doi.org/10.1517/13543784.2011.585756
Azarifar, D., & Ghasemnejad, H. (2003). Microwave-Assisted Synthesis of Some 3,5-Arylated 2-Pyrazolines. Molecules, 8(8), Art. 8. https://doi.org/10.3390/80800642
Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M., & Qazi, G. N. (2005). Synthesis and biological evaluation of chalcones and their derived pyrazoles as potential cytotoxic agents. Bioorganic & Medicinal Chemistry Letters, 15(12), 3177–3180. https://doi.org/10.1016/j.bmcl.2005.03.121
Bui, H. T. B., Nguyen, P. H., Pham, Q. M., Tran, H. P., Tran, D. Q., Jung, H., Hong, Q. V., Nguyen, Q. C., Nguyen, Q. P., Le, H. T., & Yang, S. G. (2022). Target Design of Novel Histone Deacetylase 6 Selective Inhibitors with 2-Mercaptoquinazolinone as the Cap Moiety. Molecules, 27(7), Art. 7. https://doi.org/10.3390/molecules27072204
Bui, T. B. H., Hong, V. Q., Nguyen, C. Q., & Tran, Q. D. (2022). Quinazolinone based hydroxamates as anti-inflammatory agents. Can Tho University Journal of Science, 14(2), 14(2), 73-82
https://doi.org/10.22144/ctu.jen.2022.020
Bui, T. B. H., Nguyen, C. Q., & Tran, Q. D. (2022). Docking-Based Virtual Screening for the Discovery of 1,3,4-Oxadiazoles as Aminoacyl-tRNA Synthetase Inhibitors. Can Tho University Journal of Science, 14(2), Art. 2. https://doi.org/10.22144/ctu.jen.2022.021
Casado, A., Rosell, R., García-Gómez, R., Díaz-Rubio, E., Pérez-Manga, G., Font, A., Benavides, A., & Martín, M. (1996). Phase II study of mitonafide in non-small cell lung cancer (NSCLC). Investigational New Drugs, 14(4), 415–417. https://doi.org/10.1007/BF00180820
Counihan, J. L., Grossman, E. A., & Nomura, D. K. (2018). Cancer Metabolism: Current Understanding and Therapies. Chemical Reviews, 118(14), 6893–6923. https://doi.org/10.1021/acs.chemrev.7b00775
Daoui, O., Elkhattabi, S., Bakhouch, M., Belaidi, S., Bhandare, R. R., Shaik, A. B., Mali, S. N., & Chtita, S. (2023). Cyclohexane-1,3-dione Derivatives as Future Therapeutic Agents for NSCLC: QSAR Modeling, In Silico ADME-Tox Properties, and Structure-Based Drug Designing Approach. ACS Omega. https://doi.org/10.1021/acsomega.2c07585
Delgado, J. L., Hsieh, C.-M., Chan, N. L., & Hiasa, H. (2018). Topoisomerases as anticancer targets. Biochemical Journal, 475(2), 373–398. https://doi.org/10.1042/BCJ20160583
Dinkova-Kostova, A. T., Cheah, J., Samouilov, A., Zweier, J. L., Bozak, R. E., Hicks, R. J., & Talalay, P. (2007). Phenolic Michael Reaction Acceptors: Combined Direct and Indirect Antioxidant Defenses Against Electrophiles and Oxidants. Medicinal Chemistry, 3(3), 261–268. https://doi.org/10.2174/157340607780620680
Gallego, J., & Reid, B. R. (1999). Solution Structure and Dynamics of a Complex between DNA and the Antitumor Bisnaphthalimide LU-79553: Intercalated Ring Flipping on the Millisecond Time Scale,. Biochemistry, 38(46), 15104–15115.
https://doi.org/10.1021/bi9915869
Gan, F. F., Kaminska, K. K., Yang, H., Liew, C. Y., Leow, P. C., So, C. L., Tu, L. N. L., Roy, A., Yap, C. W., Kang, T. S., Chui, W. K., & Chew, E. H. (2013). Identification of Michael Acceptor-Centric Pharmacophores with Substituents That Yield Strong Thioredoxin Reductase Inhibitory Character Correlated to Antiproliferative Activity. Antioxidants & Redox Signaling, 19(11), 1149–1165. https://doi.org/10.1089/ars.2012.4909
Hampel, S. M., Pepe, A., Greulich-Bode, K. M., Malhotra, S. V., Reszka, A. P., Veith, S., Boukamp, P., & Neidle, S. (2013). Mechanism of the Antiproliferative Activity of Some Naphthalene Diimide G-Quadruplex Ligands. Molecular Pharmacology, 83(2), 470–480. https://doi.org/10.1124/mol.112.081075
Jones, G., Willett, P., & Glen, R. C. (1995). Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. Journal of Molecular Biology, 245(1), Art. 1. https://doi.org/10.1016/S0022-2836(95)80037-9
Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking11Edited by F. E. Cohen. Journal of Molecular Biology, 267(3), Art. 3. https://doi.org/10.1006/jmbi.1996.0897
Kamal, A., Prasad, B. R., & Reddy, A. M. (2013). Chalcone linked pyrrolo[2,1-c][1, 4]benzodiazepine hybrids as potential anticancer agents and process for the preparation thereof (United States Patent No. US8461150B2). https://patents.google.com/patent/US8461150B2/en
Karimian, S., Moghdani, Y., Khoshneviszadeh, M., Pirhadi, S., Iraji, A., & Khoshneviszadeh, M. (2021). Rational Design, Synthesis, In Vitro, and In Silico Studies of Dihydropyrimidinone Derivatives as β-Glucuronidase Inhibitors. Journal of Chemistry, 2021, e6664756. https://doi.org/10.1155/2021/6664756
Karthikeyan, C., Moorthy, N. S. H. N., Ramasamy, S., Vanam, U., Manivannan, E., Karunagaran, D., & Trivedi, P. (2015). Advances in Chalcones with Anticancer Activities. Recent Patents on Anti-Cancer Drug Discovery, 10(1), 97–115.
Kramer, B., Rarey, M., & Lengauer, T. (1999). Evaluation of the FLEXX incremental construction algorithm for protein–ligand docking. Proteins: Structure, Function, and Bioinformatics, 37(2), 228-241.
Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W., & Chen, F. C. (2002). Chalcones and flavonoids as anti-Tuberculosis agents. Bioorganic & Medicinal Chemistry, 10(8), 2795–2802.
https://doi.org/10.1016/S0968-0896(02)00094-9
Loa, J., Chow, P., & Zhang, K. (2009). Studies of structure–activity relationship on plant polyphenol-induced suppression of human liver cancer cells. Cancer Chemotherapy and Pharmacology, 63(6), 1007–1016. https://doi.org/10.1007/s00280-008-0802-y
Malik, M. S., Farooq Adil, S., Moussa, Z., Altass, H. M., Althagafi, I. I., Morad, M., Ansari, M. A., Sajid Jamal, Q. M., Obaid, R. J., Al-Warthan, A. A., Shaik, T. B., & Ahmed, S. A. (2021). Rational Design and Synthesis of Naphthalene Diimide Linked Bis-Naphthalimides as DNA Interactive Agents. Frontiers in Chemistry, 9. https://www.frontiersin.org/articles/10.3389/fchem.2021.630357
Mohamed, M. F. A., Shaykoon, M. S. A., Abdelrahman, M. H., Elsadek, B. E. M., Aboraia, A. S., & Abuo-Rahma, G. E. D. A. A. (2017). Design, synthesis, docking studies and biological evaluation of novel chalcone derivatives as potential histone deacetylase inhibitors. Bioorganic Chemistry, 72, 32–41. https://doi.org/10.1016/j.bioorg.2017.03.005
Nguyen, C. Q., Nguyen, T. H. M., Nguyen, T. T. T., Bui, T. B. H., Nguyen, T. T., Huynh, N. T., Le, T. D., Nguyen, T. M. P., Nguyen, D. T., Nguyen, M. T., Pham, M. Q., Tran, Q. D., & Nguyen, H. P. (2021). Designs, Synthesis, Docking Studies, and Biological Evaluation of Novel Berberine Derivatives Targeting Zika Virus. Journal of Chemistry, 2021, e5567111. https://doi.org/10.1155/2021/5567111
Novotný, J., Bazzi, S., Marek, R., & Kozelka, J. (2016). Lone-pair–π interactions: Analysis of the physical origin and biological implications. Physical Chemistry Chemical Physics, 18(28), 19472–19481. https://doi.org/10.1039/C6CP01524G
Phuong, N. H., De, T. Q., Quoc, N. C., Phuong, H. T., Binh, T. D., Thao, H. N., Buu, H. B. T., Trong, T. N., Dang, Q. L., Thanh, N. Q. C., Ky, N. V., Quan, P. M., & Yang, S. G. (2022). Anti-multiple myeloma potential of resynthesized belinostat derivatives: An experimental study on cytotoxic activity, drug combination, and docking studies. RSC Advances, 12(34), 22108–22118.
https://doi.org/10.1039/D2RA01969H
Quốc, N. C., Trang, N. T. H., Ngân, H. T., Thảo, Đ. T. T., Tuân, N. T., Huê, B. T. B., & Đệ, T. Q. (2021). Tổng hợp, tiếp cận dược lý và đánh giá khả năng ức chế enzyme histone deacetylase 8 (HDAC8) in silico của một số dẫn xuất tương tự belinostat. Tạp chí Khoa học Trường Đại học Cần Thơ, 57(2), Art. 2. https://doi.org/10.22144/ctu.jvn.2021.038
Quốc, N. C., Phúc, Đ. H., Huê, B. T. B., Tuân, N. T., Mến, T. T., & De, T. Q. (2023). Synthesis and evaluation of biological activities of two belinostat analogs bearing fluorine at the CAP. VNUHCM Journal of Natural Sciences, 7(1), 2522-2531.
Quy, N. P., Hue, B. T. B., Do, K. M., Quy, H. T. K., De, T. Q., Phuong, T. T. B., Trang, P. C., Quoc, N. C., & Morita, H. (2022). Design, Synthesis and Cytotoxicity Evalufation of Substituted Benzimidazole Conjugated 1,3,4-Oxadiazoles. Chemical and Pharmaceutical Bulletin, 70(6), 448–453.
https://doi.org/10.1248/cpb.c22-00162
Rashid, H. ur, Xu, Y., Muhammad, Y., Wang, L., & Jiang, J. (2019). Research advances on anticancer activities of matrine and its derivatives: An updated overview. European Journal of Medicinal Chemistry, 161, 205–238. https://doi.org/10.1016/j.ejmech.2018.10.037
Ren, J. L., Zhang, X. Y., Yu, B., Wang, X. X., Shao, K. P., Zhu, X. G., & Liu, H. M. (2015). Discovery of novel AHLs as potent antiproliferative agents. European Journal of Medicinal Chemistry, 93, 321–329. https://doi.org/10.1016/j.ejmech.2015.02.026
Srinivasan, B., Johnson, T. E., Lad, R., & Xing, C. (2009). Structure−Activity Relationship Studies of Chalcone Leading to 3-Hydroxy-4,3′,4′,5′-tetramethoxychalcone and Its Analogues as Potent Nuclear Factor κB Inhibitors and Their Anticancer Activities. Journal of Medicinal Chemistry, 52(22), 7228–7235. https://doi.org/10.1021/jm901278z
Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), Art. 2. https://doi.org/10.1002/jcc.21334
Varga, L., Nagy, T., Kövesdi, I., Benet-Buchholz, J., Dormán, G., Ürge, L., & Darvas, F. (2003). Solution-phase parallel synthesis of 4,6-diaryl-pyrimidine-2-ylamines and 2-amino-5,5-disubstituted-3,5-dihydro-imidazol-4-ones via a rearrangement. Tetrahedron, 59(5), 655–662. https://doi.org/10.1016/S0040-4020(02)01560-0
Via, L. D., Gia, O., Chiarelotto, G., & Ferlin, M. G. (2009). DNA-targeting pyrroloquinoline-linked butenone and chalcones: Synthesis and biological evaluation. European Journal of Medicinal Chemistry, 44(7), 2854–2861. https://doi.org/10.1016/j.ejmech.2008.12.011
Villalona-Calero, M. A., Eder, J. P., Toppmeyer, D. L., Allen, L. F., Fram, R., Velagapudi, R., Myers, M., Amato, A., Kagen-Hallet, K., Razvillas, B., Kufe, D. W., Von Hoff, D. D., & Rowinsky, E. K. (2001). Phase I and Pharmacokinetic Study of LU79553, a DNA Intercalating Bisnaphthalimide, in Patients With Solid Malignancies. Journal of Clinical Oncology, 19(3), 857–869. https://doi.org/10.1200/JCO.2001.19.3.857