Cao Luu Ngoc Hanh , Luong Huynh Vu Thanh * , Dang Huynh Giao , Pham Mai Huong , Ly Thi Huyen Trang and Ha Tan Tam

* Corresponding author (lhvthanh@ctu.edu.vn)

Abstract

This study is aimed to synthesize Fe3O4/lignin materials and evaluate the material's ability to handle methylene blue. In which, Fe3O4 was synthesized by co-precipitation method, lignin was extracted from sugarcane bagasse, and Fe3O4/lignin materials were combined through citric acid binding agent. The as-synthesized materials were evaluated by advanced analytical methods such as X-ray diffraction techniques to determine the structural characteristics of Fe3O4 particles; Fourier transform infrared spectroscopy techniques to determine the presence of molecular bonding in the adsorbent; optical microscopy to determine the surface morphology of Fe3O4/lignin. The saturation magnetization of Fe3O4 particles and Fe3O4/lignin materials determined by vibrating sample magnetometer is 95 and 49.5 emu.g-1, respectively. Fe3O4/lignin adsorption and desorption capacity of methylene blue was evaluated by UV-Vis method. As a result, the maximum adsorption efficiency of Fe3O4/lignin for methylene blue could reach 96.53% at pH 6-7 within 60 minutes and the desorption efficiency was 66.5% at 75 minutes. The treatment of methylene blue was fitted to pseudo-second order model and Langmuir isotherm adsorption model.

Keywords: Fe3O4, Fe3O4/lignin, methylene blue, adsorption

Tóm tắt

Nghiên cứu này được thực hiện nhằm tổng hợp vật liệu Fe3O4/lignin và đánh giá khả năng xử lý methylene blue của vật liệu. Trong đó, Fe3O4 được tổng hợp bằng phương pháp đồng kết tủa, lignin được trích ly từ bã mía và vật liệu Fe3O4/lignin được kết hợp thông qua tác nhân liên kết citric acid. Các vật liệu sau khi tổng hợp được đánh giá bởi các phương pháp phân tích hiện đại như kỹ thuật nhiễu xạ tia X để xác định đặc điểm cấu trúc của các hạt Fe3O4; kỹ thuật quang phổ hồng ngoại biến đổi Fourier để xác định sự có mặt của các liên kết trong phân tử vật liệu hấp phụ; kính hiển vi quang học để xác định hình thái bề mặt của Fe3O4/lignin. Độ bão hòa từ của các hạt Fe3O4 và Fe3O4/lignin được xác định bằng từ kế mẫu rung lần lượt là 95 và 49,5 emu.g-1. Khả năng hấp phụ và nhả hấp phụ methylene blue của Fe3O4/lignin được đánh giá bằng phương pháp UV-Vis. Kết quả cho thấy hiệu suất hấp phụ tối đa của Fe3O4/lignin đối với metylen blue có thể đạt 96,53% ở pH 6-7 trong 60 phút và hiệu suất nhả hấp phụ là 66,5% trong 75 phút. Việc xử lý metylene blue tuân theo mô hình động học giả kiến bậc hai và mô hình hấp phụ đẳng nhiệt Langmuir.

Từ khóa: Fe3O4, Fe3O4/lignin, hấp phụ, methylene blue

Article Details

References

Abdullah, A. B., Muhammad, H. A. M., & Tawfik, A. S. (2019). Methylene blue removal using polyamide-vermiculite nanocomposites: Kinetics, equilibrium and thermodynamic study. Journal of Environmental Chemical Engineering, 7(3), 103107. https://doi.org/10.1016/j.jece.2019.103107

Aldawsari, A. M. (2021). Fe3O4@ABDA nanocomposite as a new adsorbent effective removal of methylene blue dye: isotherm, kinetic, and thermodynamic study. Separation Science and Technology, 56(3), 474-484. https://doi.org/10.1080/01496395.2020.1722169

Alizadeh, A., Fakhari, M., Safaei, Z., Khodeai, M. M., Repo, E., Asadi, A. (2020). Ionic liquid-decorated Fe3O4@SiO2 nanocomposite coated on talc sheets: An efficient adsorbent for methylene blue in aqueous solution. Inorganic Chemistry Communications, 121, 108204. https://doi.org/10.1016/j.inoche.2020.108204

Alqadami, A. A.,   Naushad M.,   Abdalla, M. A., Ahamad, T., Alothman, Z. A., & Alshehri, S. M. (2016). Synthesis and characterization of Fe3O4@TSC nanocomposite: highly efficient removal of toxic metal ions from aqueous medium. RSC Advances, 6(27), 22679-22689. https://doi.org/10.1039/C5RA27525C

Alqadami, A. A.,  Naushad, M.,  Alothman, Z. A., & Ahamad, T. (2018). Adsorptive performance of MOF nanocomposite for methylene blue and malachite green dyes: kinetics, isotherm and mechanism. Journal of Environmental Management, 223, 29-36. https://doi.org/10.1016/j.jenvman.2018.05.090

Alventosa-deLara, E., Barredo-Damas, S., Alcaina-Miranda, M. I., & Iborra-Clar, M. I. (2012). Ultrafiltration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance. Journal of Hazardous Materials, 209, 492-500. https://doi.org/10.1016/j.jhazmat.2012.01.065

Asghar, A., Raman, A. A. A., & Daud, W. M. A. (2015). Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. Journal of Cleaner Production, 87, 826-838. https://doi.org/10.1016/j.jclepro.2014.09.010

Budnyak, T. M., Aminzadeh, S., Pylypchuk, I. V., Sternik, D., Tertykh, V. A., Lindström, M. E., & Sevastyanova, O. (2018). Methylene blue dye sorption by hybrid materials from technical lignins. Journal of Environmental Chemical Engineering, 6(4), 4997-5007. https://doi.org/10.1016/j.jece.2018.07.041

Chi, Y., Yuan, Q., Li, Y., Tu, J., Zhao, L., Li, N., & Li, T. (2012). Synthesis of Fe3O4@SiO2 – Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol. Journal of colloid and interface science, 383(1), 96-102. https://doi.org/10.1016/j.jcis.2012.06.027

Faraji, M., Yamini, Y., & Rezaee, M. (2010). Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. Journal of the Iranian Chemical Society 7(1), 1-37. https://doi.org/10.1007/BF03245856

Gao, S., Liu, X., Xu, T., Ma, X., Shen, Z., Wu, A., Zhu, Y., & Hosmane, N. S. (2013). Synthesis and characterization of Fe10BO3/Fe3O4/SiO2 and GdFeO3/Fe3O4/SiO2: nanocomposites of biofunctional materials. Chemistry Open 2(3), 88-92. https://doi.org/10.1002/open.201300007

Gholami, N., Koohi, A. D., & Pirbazari, A. E. (2018). Fabrication, characterization, regeneration and application of nanomagnetic Fe3O4@fish scale as a bio-adsorbent for removal of methylene blue. Journal of Water and Environmental Nanotechnology, 3(3), 219-234.

Hou, Y. H., Chen, X., Li, J., Chen, Z., & Gai, X. L. (2013). Isolation of PCR-ready genomic DNA from Aspergillus niger cells with Fe3O4/SiO2 microspheres. Separation and Purification Technology,116, 101-106. https://doi.org/10.1016/j.seppur.2013.05.033

Huệ, H. K., & Nhi, T. C. Y. (2019). Trích ly lignin từ bã mía và ứng dụng hấp phụ kim loại nặng, chất màu hữu cơ (Luận văn tốt nghiệp đại học). Trường Đại học Cần Thơ.

Indra, D. M., Vimal, C. S., & Nitin, K. A. (2006). Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses. Dyes Pigment, 69, 210–223. https://doi.org/10.1016/j.dyepig.2005.03.013

Jędrzak, A., Rębiś, T., Nowicki, M., Synoradzki, K., Mrówczyński, R., & Jesionowski, T. (2018). Polydopamine grafted on an advanced Fe3O4/lignin hybrid material and its evaluation in biosensing. Applied Surface Science, 455, 455-464. https://doi.org/10.1016/j.apsusc.2018.05.155

Jin, Y., Zeng, C., Lü, Q. -F., & Yu, Y. (2019). Efficient adsorption of methylene blue and lead ions in aqueous solutions by 5-sulfosalicylic acid modified lignin. International Journal of Biological Macromolecules, 123, 50-58. https://doi.org/10.1016/j.ijbiomac.2018.10.213

Kenawy, E. R., Ayman, A. G., Wabaidur, S. M., AliKhan, M., RazaSiddiqui, M., Zeid, A. A., Alqadami, A. A., & Hamid, M. (2018). Cetyltrimethylammonium bromide intercalated and branched polyhydroxystyrene functionalized montmorillonite clay to sequester cationic dyes. Journal of Environmental Management, 219, 285-293. https://doi.org/10.1016/j.jenvman.2018.04.121

Kordouli, E., Bourikas, K., Lycourghiotis, A., & Kordulis, C. (2015). The mechanism of azo-dyes adsorption on the titanium dioxide surface and their photocatalytic degradation over samples with various anatase/rutile ratios. Catalysis Today, 252, 128-135. https://doi.org/10.1016/j.cattod.2014.09.010

Kuang, Y., Zhang, X., & Zhou, S. (2020). Adsorption of methylene blue in water onto activated carbon by surfactant modification. Water, 12(2), 587. https://doi.org/10.3390/w12020587

Kunde, G. B., Sehgal, B., & Ganguli, A. K. (2019). Synthesis of mesoporous rebar MWCNT/alumina composite (RMAC) nodules for the effective removal of methylene blue and Cr (VI) from an aqueous medium. Journal of Hazardous Materials, 374, 140-151. https://doi.org/10.1016/j.jhazmat.2019.03.099

Li, X., He, Y., Sui, H., & He, L. (2018). One-step fabrication of dual responsive lignin coated Fe3O4 nanoparticles for efficient removal of cationic and anionic dyes. Nanomaterials, 8(3), 162. https://doi.org/10.3390/nano8030162

Liu, G., Li, L., Dai, Z., Qi, Q., Wu, J., Ma, L.Q., Tang, C., Xua, J. (2020). Organic adsorbents modified with citric acid and Fe3O4 enhance the removal of Cd and Pb in contaminated solutions. Chemical Engineering Journal, 395, 125108-125118.  https://doi.org/10.1016/j.cej.2020.125108

Lutterotti, L., Pilliere, H., Fontugne, C., Boullay, P., & Chateigner, D. (2019). Full-profile search–match by the Rietveld method. Journal of Applied Crystallography, 52(3), 587-598. https://doi.org/10.1107/S160057671900342X

Thanh, L. H. V., Anh, T. T. P., Kiệt, N. T., & Đức, Đ. (2021). Tổng hợp vật liệu nano Fe3O4@SiO2 cấu trúc lõi vỏ có độ từ hóa cao. Tạp chí Khoa học Trường Đại học Cần Thơ, 57(3A), 53-64. https://doi.org/10.22144/ctu.jvn.2021.085

Mahmoodi-Babolan, N., Heydari, A., & Nematollahzade, A. (2019). Removal of methylene blue via bioinspired catecholamine/starch superadsorbent and the efficiency prediction by response surface methodology and artificial neural network-particle swarm optimization. Bioresource technology, 294, 122084. https://doi.org/10.1016/j.biortech.2019.122084

Padilha, C. E. A., Nogueira, C. C., Souza, D. F. S., Oliveira, J. A., & Santos, E. S. D. (2020). Organosolv lignin/Fe3O4 nanoparticles applied as a β-glucosidase immobilization support and adsorbent for textile dye removal. Industrial Crops and Products, 146, 112167. https://doi.org/10.1016/j.indcrop.2020.112167

Park, J., An, K., Hwang. Y., Park, J. -G., Noh, H. -J., Kim, J. - Y., Park, J. - H., Hwang, N.-M., & Hyeon, T.(2004). Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Materials, 3, 891–895. https://doi.org/10.1038/nmat1251

Pirbazari, A. E., Saberikhah, E., & Kozani, S. S. H. (2014). Fe3O4–wheat straw: preparation, characterization and its application for methylene blue adsorption. Water Resources and Industry, 7, 23-37. https://doi.org/10.1016/j.wri.2014.09.001

Ramesh, A. V., Devi, D. R., Botsa, S. M., & Basavaia, K. (2018). Facile green synthesis of Fe3O4 nanoparticles using aqueous leaf extract of Zanthoxylum armatum DC. for efficient adsorption of methylene blue. Journal of Asian Ceramic Societies, 6(2), 145-155. https://doi.org/10.1080/21870764.2018.1459335

Rehman, R., Anwar, J., Mahmud, T., Salman, M., Shafique, U., Zaman, W.U. (2011). Removal of Murexide (Dye) from Aqueous Media using Rice Husk as an Adsorbent. Journal-Chemical Society of Pakistan, 33(4), 598-603.

Rezakazemi, M., Ahmad, B. A., Gavin, M. W., & Shirazian, S. (2018). Quantum chemical calculations and molecular modeling for methylene blue removal from water by a lignin-chitosan blend. International journal of biological macromolecules, 120, 2065-2075. https://doi.org/10.1016/j.ijbiomac.2018.09.027

Saini, J., Garg, V. K., & Gupta, R. K. (2018). Removal of methylene blue from aqueous solution by Fe3O4@Ag/SiO2 nanospheres: synthesis, characterization and adsorption performance. Journal of Molecular Liquids, 250, 413-422. https://doi.org/10.1016/j.molliq.2017.11.180

Shao, D. X., Hu, A., Wang, J., & Yu, C. W. (2008). Monodispersed magnetite/silica composite microspheres: preparation and application for plasmid DNA purification. Colloids and  Surfaces  A: Physicochemical  and  Engineering Aspects, 322(1), 61-65. https://doi.org/10.1016/j.colsurfa.2008.02.023

Shi, Y., Mingshuai, Z., Linxuan, L., Yunkai, L., Na, Z., Shisuo, F., & Jun, T. (2018). Preparation of tea waste-nano Fe3O4 composite and its removal mechanism of methylene blue from aqueous solution. Environ Chem, 37, 96-107.

Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93(1), 154-168. https://doi.org/10.1016/j.jenvman.2011.09.012

Vidovix, T. B., Quesada, H. B., Januário, E. F., Diogo, R. B., & Vieira, A. M. S. (2019). Green synthesis of copper oxide nanoparticles using Punica granatum leaf extract applied to the removal of methylene blue. Materials Letters, 257, 126685. https://doi.org/10.1016/j.matlet.2019.126685

Wang, S., Tang, J., Zhao, H., Wan, J., & Chen, K. (2014). Synthesis of magnetite–silica core–shell nanoparticles via direct silicon oxidation. Journal of Colloid and Interface Science, 432, 43-46. https://doi.org/10.1016/j.jcis.2014.06.062

Wang, Z., Gao, M., Li, X., Ning, J., Zhou, Z., & Li, G. (2020). Efficient adsorption of methylene blue from aqueous solution by graphene oxide modified persimmon tannins. Materials Science and Engineering C, 108, 110196. https://doi.org/10.1016/j.msec.2019.110196

Yao, Y., Xu, F., Chen, M., Xu, Z., & Zhu, Z. (2010). Adsorption behavior of methylene blue on carbon nanotubes. Bioresource Technology, 101(9), 3040-3046. https://doi.org/10.1016/j.biortech.2009.12.042

Yuan, C., Lou, Z., Wang, W., Yang, L., & Li, Y. (2019). Synthesis of Fe3C@C from Pyrolysis of Fe3O4-Lignin clusters and its application for quick and sensitive detection of PrPSc through a sandwich SPR detection assay. International Journal of Molecular Sciences, 20(3), 741. https://doi.org/10.3390/ijms20030741

Zhang, C., Dai, Y., Wu, Y., Lu, G., Cao, Z., Cheng, J., Wang, K., Yang, H., Xia, Y., Wen, X., Ma, W., Liu, C., & Wang, Z. (2020). Facile preparation of polyacrylamide/chitosan/ Fe3O4 composite hydrogels for effective removal of methylene blue from aqueous solution. Carbohydrate Polymers, 234, 115882. https://doi.org/10.1016/j.carbpol.2020.115882

Zhang, Q., Li, M., Chenyan, G., Jia, Z., Wan, G., Wang, S., & Min, D. (2019). Fe3O4 nanoparticles loaded on Lignin nanoparticles applied as a peroxidase mimic for the sensitively colorimetric detection of H2O2Nanomaterials, 9(2), 210. https://doi.org/10.3390/nano9020210