Huynh Ky * , Tran Dang Thanh Phat , Nguyen Thi Kim Phung , Van Quoc Giang , Nguyen Van Manh , Tran In Do , Nguyen Thanh Tam , Nguyen Chau Thanh Tung , Nguyen Loc Hien and Huynh Nhu Dien

* Corresponding author (hky@ctu.edu.vn)

Abstract

In this study, the next generation sequencing technology was used to resequence the geneome of Doc Phung rice varieties (salt-tolerant variety) and Nep Mo (salt-susceptible variety) to identify functional markers that are involved in salt tolerance mechanisms in Doc Phung rice variety. In comparision with the reference geneome, the result showed that Doc Phung geneome was consisted of 1,918,726 variations of SNP and 163.409 InDels (81,435 insertions, and 81,974 deletion). Whereas in Nep Mo variety, there were 1,931,380 SNPs and 171.663 InDels (88,473 insertions and 83,190 deletion). Most of the variants are located in non-functional regions including upstreams, downstream, and intergeneic, accounting for over 75%. The variation of OsTZF1 (LOC_Os05g10670.1) gene that regulates the expression of those gene related to biological and abiotic stress factors, showed that there were 7 SNPs and 9 nucleotides insertion (encode 3 amino acid arginine) in Doc Phung variety when being compared to Nep Mo based on reference geneome. This information will help the breeders to apply as a molecular marker, using salt-tolerant rice breeding program in the future.

Keywords: InDel, SNP, Doc Phung, SNP and Whole geneome sequencing

Tóm tắt

Trong nghiên cứu này, kỹ thuật giải trình tự thế hệ mới (next generation sequencing) được ứng dụng để giải trình tự của bộ gene 2 giống lúa Đốc Phụng (giống chống chịu mặn) và giống Nếp Mỡ (giống mẫn cảm với mặn), nhằm tìm các chỉ thị phân tử là gene chức năng mà các gene này liên quan đến cơ chế chống chịu mặn có trong giống lúa Đốc Phụng. Kết quả so sánh với bộ gene tham chiếu, bộ gene của giống lúa Đốc Phụng có khoảng 1.918.726 biến thể dạng thay đổi một nucleotide (Single Nucleotide Polymorphism) và và chèn vào khoảng 81.435, mất đi khoảng 81.974. Trong khi đó ở giống Nếp Mỡ, có khoảng 1.931.380 SNP và chèn vào khoảng 88.473, mất đi khoảng 83.190 vùng DNA. Đa số các biến thể xuất hiện ở các vùng không mang chức năng như trước sau và giữa các gene chiếm tỉ lệ trên 75%. Kết quả khảo sát biến thể xuất hiện trong vùng gene OsTZF1 (LOC_Os05g10670.1), có chức năng điều hòa các nhóm gene liên quan đến các yếu tố stress sinh học và phi sinh học, cho thấy ở giống Đốc Phụng có 7 biến thể SNP và có chèn thêm 9 nucleotide mã hóa 3 amino acid arginine khi so với giống Nếp Mỡ dựa trên bộ gene tham chiếu. Thông tin này giúp cho các nhà chọn giống sử dụng nó như chi thị phân tử, chọn tạo giống chống chịu...

Từ khóa: Đốc Phụng, gải trình tự bộ gene, InDel, SNP

Article Details

References

Barba, M., Czosnek, H., & Hadidi, A. (2014). Historical perspective, development and applications of next-geneeration sequencing in plant virology. Viruses, 6(1), 106-136.

Barreiro, L. B., Laval, G., Quach, H., Patin, E., & Quintana-Murci, L. (2008). Natural selection has driven population differentiation in modern humans. Nature Genetics, 40, 340-345.

Batley, J., Barker, G., O'Sullivan, H., Edwards, K. J., & Edwards, D. (2003). Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant physiology, 132, 84-91.

Bolser, D., Staines, D. M., Pritchard, E., & Kersey, P. (2016). Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Geneomics Data. In: Edwards, D. (Ed.), Plant Bioinformatics: Methods and Protocols. Springer New York, New York, NY, pp. 115-140.

Chen, R., Cheng, Y., Han, S., Van Handel, B., Dong, L., Li, X., & Xie, X. (2017). Whole geneome sequencing and comparative transcriptome analysis of a novel seawater adapted, salt-resistant rice cultivar – sea rice 86. BMC Geneomics, 18, 655.

Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34, i884-i890.

Chu, J., Mohamadi, H., Warren, R. L., Yang, C., & Birol, I. (2017). Innovations and challenges in detecting long read overlaps: an evaluation of the state-of-the-art. Bioinformatics (Oxford, England), 33, 1261-1270.

Doyle, J. J., and Doyle, J. J. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13-15.

Fuentes, R. R., Chebotarov, D., Duitama, J., Smith, S., De la Hoz, J. F., Mohiyuddin, M., Wing, R. A., McNally, K. L., Tatarinova, T., Grigoriev, A., Mauleon, R., & Alexandrov, N.  (2019). Structural variants in 3000 rice geneomes. Geneome Research, 29, 870-880.

Hindorff, L. A., Sethupathy, P., Junkins, H. A., Ramos, E. M., Mehta, J. P., Collins, F. S., & Manolio, T. A. (2009). Potential etiologic and functional implications of geneome-wide association loci for human diseases and traits. Proceedings of the National Academy of Sciences, 106, 9362-9367.

Huang, X., Lu, T., & Han, B. (2013). Resequencing rice geneomes: an emerging new era of rice geneomics. Trends in genetics: TIG, 29, 225-232.

Islam, M. Z., Khalequzzaman, M., Prince, M., Siddique, M. A., Rashid, E., Ahmed, M., Pittendrigh, B. R., & Ali, M. P. (2018). Diversity and population structure of red rice germplasm in Bangladesh. PLOS ONE, 13, e0196096.

Jain, M. (2012). Next-generation sequencing technologies for gene expression profiling in plants. Brief Funct Geneomics, 11, 63-70.

Jain, M., Moharana, K. C., Shankar, R., Kumari, R., & Garg, R. (2014). Geneomewide discovery of DNA polymorphisms in rice cultivars with contrasting drought and salinity stress response and their functional relevance. Plant Biotechnology Journal, 12, 253-264.

Jan, A., Maruyama, K., Todaka, D., Kidokoro, S., Abo, M., Yoshimura, E., Shinozaki, K., Nakashima, K., & Yamaguchi-Shinozaki, K. (2013). OsTZF1, a CCCH-Tandem Zinc Finger Protein, Confers Delayed Senescence and Stress Tolerance in Rice by Regulating Stress-Related Genes. Plant Physiology, 161, 1202-1216.

Kawahara, Y., de la Bastide, M., Hamilton, J. P., Kanamori, H., McCombie, W. R., Ouyang, S.,

Kawahara, Y., de la Bastide, M., Hamilton, J. P., Kanamori, H., McCombie, W. R., Ouyang, S., ... & Matsumoto, T. (2013). Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice6(1), 1-10.

Keel, B. N., and Snelling, W. M. (2018). Comparison of Burrows-Wheeler Transform-Based Mapping Algorithms Used in High-Throughput Whole-Geneome Sequencing: Application to Illumina Data for Livestock Geneomes. Frontiers in genetics, 9, 35-35.

Khush, G. S. (1997). Origin, dispersal, cultivation and variation of rice. Springer, Dordrecht.

Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nature methods, 12, 357-360.

Kreimer, A., Litvin, O., Hao, K., Molony, C., Pe’er, D., & Pe'er, I. (2012). Inference of modules associated to eQTLs. Nucleic acids research40(13), e98-e98.

Lakra, N., Kaur, C., Singla-Pareek, S. L., & Pareek, A. (2019). Mapping the ‘early salinity response’triggered proteome adaptation in contrasting rice genotypes using iTRAQ approach. Rice12(1), 1-22.

Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics27(21), 2987-2993.

Li, H. (2014). Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics30(20), 2843-2851.

Li, H. (2016). Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics32(14), 2103-2110.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ... & Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics25(16), 2078-2079.

Liu, W., Ghouri, F., Yu, H., Li, X., Yu, S., Shahid, M. Q., & Liu, X. (2017). Geneome wide re-sequencing of newly developed Rice Lines from common wild rice (Oryza rufipogon Griff.) for the identification of NBS-LRR genes. PLOS ONE, 12, e0180662.

Lv, Q., Li, W., Sun, Z., Ouyang, N., Jing, X., He, Q., ... & Yuan, D. (2020). Resequencing of 1,143 indica rice accessions reveals important genetic variations and different heterosis patterns. Nature communications11(1), 1-10.

Menguer, P. K., Sperotto, R. A., & Ricachenevsky, F. K. (2017). A walk on the wild side: Oryza species as source for rice abiotic stress tolerance. Genetics and molecular biology40, 238-252.

Morgulis, A., Gertz, E. M., Schäffer, A. A., & Agarwala, R. (2006). A fast and symmetric DUST implementation to mask low-complexity DNA sequences. Journal of Computational Biology13(5), 1028-1040.

Morton, B. R. (1995). Neighboring base composition and transversion/transition bias in a comparison of rice and maize chloroplast noncoding regions. Proceedings of the National Academy of Sciences92(21), 9717-9721.

Naveed, S. A., Zhang, F., Zhang, J., Zheng, T. Q., Meng, L. J., Pang, Y. L., ... & Li, Z. K. (2018). Identification of QTN and candidate genes for salinity tolerance at the germination and seedling stages in rice by genome-wide association analyses. Scientific reports8(1), 1-11.

Nguyễn Thanh TườngNguyễn Tâm ĐạoVõ Công ThànhNguyễn Bảo Vệ. (2011). Tuyển chọn giống lúa cao sản chịu mặn cho vùng lúa – tôm tại tỉnh Bạc Liêu. Tạp chí Nông nghiệp và Phát triển Nông thôn, 12, 30-36.

Phạm Thanh Vũ, Võ Quang Minh, Vương Tuấn Huy và Phan Chí Nguyện. (2016). Tác động của mặn và ngập theo kịch bản biến đổi khí hậu đến tiềm năng thích nghi đất đai vùng ven biển Đồng bằng sông Cửu Long. Tạp chí Khoa học Trường Đại học Cần Thơ, Số chuyên đề: Nông nghiệp, 71-83.

Rahman, M. A., Thomson, M. J., Shah-E-Alam, M., de Ocampo, M., Egdane, J., & Ismail, A. M. (2016). Exploring novel genetic sources of salinity tolerance in rice through molecular and physiological characterization. Annals of botany117(6), 1083-1097.

Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., & Mesirov, J. P. (2011). Integrative genomics viewer. Nature biotechnology29(1), 24-26.

Seong, S. Y., Shim, J. S., Bang, S. W., & Kim, J. K. (2020). Overexpression of OsC3H10, a CCCH-zinc finger, improves drought tolerance in rice by regulating stress-related genes. Plants9(10), 1298.

Steri, M., Idda, M. L., Whalen, M. B., & Orrù, V. (2018). Genetic variants in mRNA untranslated regions. Wiley Interdisciplinary Reviews: RNA9(4), e1474.

Subbaiyan, G. K., Waters, D. L. E., Katiyar, S. K., Sadananda, A. R., Vaddadi, S., & Henry, R. J. (2012). Geneome-wide DNA polymorphisms in elite indica rice inbreds discovered by whole-geneome sequencing. Plant Biotechnology Journal, 10, 623-634.

Subudhi, P. K., Shankar, R., & Jain, M. (2020). Whole geneome sequence analysis of rice geneotypes with contrasting response to salinity stress. Scientific Reports, 10, 21259.

Tam, N. T. (2019). The geneome constitution of rice resources in the Mekong Delta and their association with salinity stress (Doctoral dissertation). Hokkaido University.

Thorvaldsdóttir, H., Robinson, J. T., & Mesirov, J. P. (2013). Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in bioinformatics14(2), 178-192.

Tin, H. Q., Loi, N. H., Labarosa, S. J. E., McNally, K. L., McCouch, S., & Kilian, B. (2021). Phenotypic response of farmer‐selected CWR‐derived rice lines to salt stress in the Mekong Delta. Crop Science61(1), 201-218.

Wakeley, J. (1996). The excess of transitions among nucleotide substitutions: new methods of estimating transition bias underscore its significance. Trends in ecology & evolution11(4), 158-162.

Wang, J., Zhu, J., Zhang, Y., Fan, F., Li, W., Wang, F., ... & Yang, J. (2018). Comparative transcriptome analysis reveals molecular response to salinity stress of salt-tolerant and sensitive genotypes of indica rice at seedling stage. Scientific reports8(1), 1-13.

Wang, P., Xiong, Y., Gong, R., Yang, Y., Fan, K., & Yu, S. (2019). A key variant in the cis-regulatory element of flowering gene Ghd8 associated with cold tolerance in rice. Scientific reports9(1), 1-14.

Yuan, J., Wang, X., Zhao, Y., Khan, N. U., Zhao, Z., Zhang, Y., ... & Li, Z. (2020). Genetic basis and identification of candidate genes for salt tolerance in rice by GWAS. Scientific reports10(1), 1-9.