Đỗ Viết Phương * , Le Nguyen Doan Duy , Đặng Thị Sáu Phạm Văn Tấn

* Tác giả liên hệ (dovietphuong@iuh.edu.vn)

Abstract

In this study, the coffee pulp was pretreated by NaOH (0.2 g/g biomass) at 120oC in 20 minutes to remove lignin and hemicellulose. This pretreatment resulted in a removal of 46.11% hemicellulose and 76.63% lignin . After the pretreatment, the biomass was hydrolyzed with enzyme Viscozyme Cassava C (enzyme loading was 25 FPU/g) at temperature 50oC. After 96 hours of hydrolysis, the maximum concentration of reducing sugars and glucose was 37.33 g/L and 24.36 g/L, respectively. The Saccharomyces cerevisiae yeast was added at a density of 3x108 cells/mL. The fermentation was processed at 35oC in 72 hours. The maximum production of 10.06 g/L ethanol was obtained. The result indicated that the coffee pulp, an inedible but plentiful material, will be a potential feedstock for bioethanol production in Vietnam.
Keywords: Alkaline pretreatment, cellulose hydrolysis, coffee pulp, lignocellulose biomass

Tóm tắt

Trong nghiên cứu này, vỏ quả cà phê được tiền xử lý bởi NaOH (0,2 g/g nguyên liệu) ở nhiệt độ 120oC trong thời gian 20 phút nhằm mục đích loại bỏ bớt lignin và hemicellulose (kết quả loại bỏ được 46,11% hemicellulose và 76,63% lignin). Nguyên liệu đã qua quá trình tiền xử lý được thủy phân bởi enzyme Viscozyme Cassava C (25 FPU/g) ở nhiệt độ 50oC. Sau thời gian 96 giờ thủy phân thu được dịch thủy phân có hàm lượng đường khử và đường glucose tương ứng là 37,33 g/L và 24,36 g/L. Chủng nấm men Saccharomyces cerevisiae được bổ sung vào dịch thủy phân với mật độ 3x108 tế bào/mL. Quá trình lên men được thực hiện ở nhiệt độ 35oC trong thời gian 72 giờ, hàm lượng ethanol đo được sau quá trình lên men là 10,06 g/L. Nghiên cứu này cũng chỉ ra rằng, vỏ quả cà phê là nguồn nguyên liệu dồi dào và có nhiều tiềm năng để sản xuất ra ethanol sinh học ở Việt Nam.
Từ khóa: Thủy phân cellulose, tiền xử lý kiềm, sinh khối nông nghiệp, vỏ quả cà phê

Article Details

Tài liệu tham khảo

CUNIFF, P.E., 1995. Official Methods of Analysis of AOAC International: Agricultural Chemicals; Contaminants; Drugs. AOAC International.

Ballesteros, M., Oliva, J.M., Negro, M.J., Manzanares, P. and Ballesteros, I., 2004. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process(SFS) withKluyveromycesmarxianusCECT 10875. Process Biochemistry. 39(12): 1843-1848.

Bonilla-Hermosa, V.A., Duarte, W.F., and Schwan, R.F., 2014. Utilization of coffee by-products obtained from semi-washed process for production of value-added compounds. Bioresource Technology. 166: 142-150.

Chen, Y., Sharma-Shivappa, R.R., Keshwani, D., and Chen, C., 2007. Potential of agricultural residues andhay for bioethanol production. Applied Biochemistry and Biotechnology. 142(3): 276-290.

Converse, A.O., Matsuno, R., Tanaka, M. and Taniguchi, M., 1988. A model of enzyme adsorption and hydrolysis of microcrystalline cellulose with slow deactivation of the adsorbed enzyme. Biotechnology and Bioengineering. 32(1): 38-45.

DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.T. and Smith, F., 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry. 28(3): 350-356.

Elias, L.G., 1979. Chemical composition of coffee-berry by-products. In:Braham, J.E. (Ed). Coffee pulp: composition, technology, and utilization. IDRC. Ottawa, pp. 11-16.

Franca, A. S., Oliveira, L. S. and Franca, A. S., 2009. Coffee processing solid wastes: current uses and future perspectives. In:Geoffrey, S.A. and Pablo, A. (Eds).Agricultural Wastes. Nova Science Publishers Inc..New York,155-189.

Gnansounou, E., 2008. Fuel ethanol. Current status and outlook. In:Pandey, A. (Ed). Handbook of Plant-Based Biofuels. CRC Press. Taylor and Francis Group, pp. 57-71.

Gurram, R., Al-Shannag, M., Knapp, S., Das, T., Singsaas, E., and Alkasrawi, M., 2016. Technical possibilities of bioethanol production from coffee pulp: a renewable feedstock. Clean Technologies and Environmental Policy. 18(1): 269-278.

Leifa, F., Pandey, A. and Soccol, C.R., 2001. Production of Flammulina velutipes on coffee husk and coffee spent-ground. Brazilian Archives of Biology and Technology.44(2): 205-212.

Menezes, E.G., do Carmo, J.R., Alves, J.G.L. et al., 2014. Optimization of alkaline pretreatment of coffee pulp for production of bioethanol. Biotechnology Progress. 30(2): 451-462.

Miller, G.L., 1959. Use of dinitrosalicylicacid reagent for determination of reducing sugar. Analytical Chemistry. 31: 426-428.

Oliveira, L.S., Franca, A.S., Camargos, R.R.S., et al. 2008. Coffee oil as a potential feedstock for biodiesel production. Bioresource Technol. 99: 3244-3250.

Ooshima, H., Aso, K., Harano, Y., and Yamamoto, T., 1984. Microwave treatment of cellulosic materials for their enzymatic hydrolysis. Biotechnology Letters. 6(5): 289-294.

Palonen, H., 2004. Role of lignin in the enzymatic hydrolysis of lignocellulose. VTT Technical Research Centre of Finland, 84 pages.

Park, I., Kim, I., Kang, K., Sohn, H., Rhee, I., Jin, I., and Jang, H., 2010. Cellulose ethanol production from waste newsprint by simultaneous saccharification and fermentation usingSaccharomyces cerevisiaeKNU5377. Process Biochemistry. 45(4): 487-492.

Saha, B.C. and Cotta, M.A., 2008. Fuel ethanol production from agricultural residues: current status and future prospects. Journal of Biotechnology. 136: 285-286.

Sayyad, S.A.F., Chaudhari, S.R., and Panda, B.P., 2015. Quantitative determination of ethanol in arishtaby usingUV-visiblespectrophotometer. Pharmaceutical and Biological Evaluations. 2(5): 204-207.

Shankaranand, V. and Lonsane, B., 1994. Coffee husk: an inexpensive substrate for production of citric acid byAspergillus nigerin a solid-state fermentation system. World Journal of Microbiology and Biotechnology.10(2): 165-168.

Shenoy, D., Pai. A., Vikas, R., Neeraja, H., Deeksha, J., Nayak, C., and Rao, C.V., 2011. A study on bioethanol production from cashew apple pulp and coffee pulp waste. Biomass and Bioenergy. 35(10): 4107-4111.

Silverstein, R.A., Chen, Y., Sharma-Shivappa, R.R., Boyette, M.D., and Osborne, J., 2007. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresource Technology. 98(16): 3000-3011.

Van SoestP.J. and Wine R.H., 1967. Use of detergents in the analysis of fibrous feeds. Determination of plant cellwallconstituents. Journal of the Association of Official Analytical Chemists. 50: 50-55.

Wu, J., and Ju, L.K., 1998. Enhancing enzymatic saccharification of waste newsprint by surfactant addition. Biotechnology Progress. 14(4): 649-652.

Xu, J., and Cheng, J.J., 2011. Pretreatment of switchgrass for sugar production with the combination of sodium hydroxide and lime. Bioresource Technology. 102(4): 3861-3868.