Hölder stability for bang-bang optimal control problems of semilinear elliptic partial differential equations
Abstract
Tóm tắt
Article Details
References
Bonnans, J.F., Shapiro, A., 2000. Perturbation Analysis of Optimization Problems. Springer-Verlag, New York, 567 pages.
Casas, E., 2012. Second order analysis for bang-bang control problems of PDEs. SIAM Journal on Control and Optimization. 50(4): 2355–2372.
Casas, E., De Los Reyes, J.C. and Tröltzsch, F., 2008. Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints. SIAM Journal on Optimization, 19(2), 616–643.
Casas, E., Wachsmuth, D. and Wachsmuth, G., 2017. Sufficient second-order conditions for bang-bang control problems. SIAM Journal on Control and Optimization 55, 3066–3090.
Meyer, C., Panizzi, L. and Schiela, A., 2011. Uniqueness criteria for the adjoint equation in state-constrained elliptic optimal control. Numerical Functional Analysis and Optimization 32, 983–1007.
Pörner, F., Wachsmuth, D., 2016. An iterative Bregman regularization method for optimal control problems with inequality constraints. Optimization 65, 2195–2215.
Pörner, F., Wachsmuth, D., 2017. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Preprint, 1–25.
Qui, N.T., Wachsmuth, D., 2017, Stability for bang-bang control problems of partial differential equations. Optimization, (2018), pp.~1--21. DOI:10.1080/02331934.2018.1522634
Tröltzsch, F., 2010. Optimal Control of Partial Differential Equations. Theory, Methods and Applications. American Mathematical Society, Providence, RI.