Optimality conditions in convex optimization with the convex feasible set defined by infinite inequality constraints
Abstract
Tóm tắt
Article Details
References
Boyd, S. and Vandenberghe, L., 2004. Convex Optimization. Cambridge University Press, Cambridge.
Caristi, G. and Ferrara, M., 2017. Necessary conditions for nonsmooth multiobjective semiinfinite problems using Michel-Penot subdifferential. Decisions in Economics and Finance 40(1): 103-113.
Chieu, N.H., Jeyakumar, V., Li, G. and Mohebi, H., 2018. Constraint qualifications for convex optimization without convexity of constraints: New connections and applications to best approximation. European Journal of Operational Research 265(1): 19-25.
Clarke, F.H., 1983. Optimization and Nonsmooth Analysis. Wiley, New York.
Dutta, J. and Lalitha, C.S., 2013. Optimality conditions in convex optimization revisited. Optimization Letters 7(2): 221-229.
Giorgi, G., 2013. Optimality conditions under generalized convexity revisited. Annals of the University of Bucharest, Mathematical Series 4(LXII): 479-490.
Goberna, M.A. and Lopez, M.A., 1998. Linear Semi-Infinite Optimization. Wiley, Chichester.
Goberna, M.A., Guerra-Vazquez, F. and Todorov, M.I., 2016. Constraint qualifications in convex vector semi-infinite optimization. European Journal of Operational Research 249(1) : 32-40.
Goberna, M.A. and Kanzi, N., 2017. Optimality conditions in convex multiobjective SIP. Mathematical Programming 164(1): 167-191.
Hiriart-Urruty, J.B. and Lemarechal, C., 1993. Convex Analysis and Minimization Algorithms I. Springer, Berlin.
Kanzi, N., 2014. Constraint qualifications in semi-infinite systems and their applications in nonsmooth semi-infinite problems with mixed constraints. SIAM Journal on Optimization 24(2): 559-572.
Lasserre, J.B., 2011. On representations of the feasible set in convex optimization. Optimization Letters 5(1): 1-5.
Lopez, M.A. and Still, G., 2007. Semi-infinite programming. European Journal of Operational Research 180(2): 491-518.
Martinez-Legaz, J.E., 2015. Optimality conditions for pseudo-convex minimization over convex sets defined by tangentially convex constraints. Optimization Letters 9(5): 1017-1023.
Michel, P. and Penot, J-.P., 1984. Calcus sous-differentiel pour des fonctions Lipschitziennes et non Lipschitziennes. Comptes Rendus de l'Académie des Sciences - Series I -Mathematics 12(2) : 269-272.
Michel, P. and Penot J-.P., 1992. A generalized derivative for calm and stable functions. Differential Integral Equations 5(2): 433-454.
Mordukhovich, B.S., 2006. Variational Analysis and Generalized Differentiation. Vol. I: Basic Theory. Springer, Berlin.
Pshenichnyi, B.N., 1971. Necessary Conditions for an Extremum. Marcel Dekker Inc, New York.
Quyen, H., 2017. Necessary and sufficient KKT optimality conditions in non-convex optimization. Optimization Letters 11(1): 41-61.
Rockafellar R.T., 1970. Convex Analysis. Princeton Math. Ser., vol. 28, Princeton University Press, Princeton, New Jersey.
Tung, L.T., 2017. Strong Karush-Kuhn-Tucker optimality conditions and duality for nonsmooth multiobjective semi-infinite programming via Michel-Penot subdifferential. Journal of Nonlinear Functional Analysis 2017: 1-21.
Tung, L.T., 2018. Strong Karush-Kuhn-Tucker optimality conditions for multiobjective semi-infinite programming via tangential subdifferential. RAIRO - Operations Research 52(4): 1019-1041.
Yamamoto, S. and Kuroiwa, D., 2016. Constraint qualifications for KKT optimality condition in convex optimization with locally Lipschitz inequality constraints. Linear and Nonlinear Analysis 2(2): 101-111.
Ye, J. J., 2004. Nondifferentiable multiplier rules for optimization and bilevel optimization problems. SIAM Journal on Optimization 15(1): 252-274.