Nguyen Thanh Tien * and Pham Thanh Dung

* Corresponding author (nttien@ctu.edu.vn)

Abstract

We report the simulation results which compute the quantum mechanical “particle in a box" problem for a variety of different confinement shapes, such as boxes, domes, and pyramids. They are considered as the quantum dots. We explored the energy spectrum, optical absorption and orbital shapes of quantized states for the semiconductor quantum dots. From simulation data, we figured out the quantum effects in the real semiconductor material systems. We The results show that, the different confinement shapes have strong effect to on the optical absorption of the semiconductor quantum dots.
Keywords: Simulation, Quantum Dot, Optical absorption, Quantum effect, Electronic state

Tóm tắt

Bài báo thể hiện kết quả mô phỏng bài toán cơ học lượng tử “hạt chuyển động trong hộp kín” với các vật liệu và hình dạng hạt khác nhau như: hình hộp lập phương, hình vòm và kim tự tháp. Chúng được xem như các chấm lượng tử. Nghiên cứu đã mô phỏng phổ năng lượng, phổ hấp thụ quang và các trạng thái điện tử của các chấm lượng tử bán dẫn. Từ dữ liệu mô phỏng, chúng tôi phân tích, lý giải về các hiệu ứng lượng tử trong hệ vật liệu bán dẫn thực khác nhau. Kết quả nghiên cứu đã xác nhận rằng, hình dạng của các chấm lượng tử có ảnh hưởng quan trọng đến phổ hấp thụ quang của các chấm lượng tử bán dẫn.
Từ khóa: Mô phỏng, chấm lượng tử, sự hấp thụ quang, hiệu ứng lượng tử, trạng thái điện tử

Article Details

References

Ameenah Al-Ahmadi (2012), Optical and Transport Properties of Quantum Dot, InTech.

Doan Nhat Quang, Nguyen Nhu Dat, Nguyen Thanh Tien and Dinh Nhu Thao, Single-valued estimation of the interface profile from intersubband absorption linewidth data, Appl. Phys. Lett, 100, 113103 (2012).

Duong Xuan Long, Nguyen Hong Quang, Tran The Trung, Vu Duc Tho, Somsavath Leuangtakuon, Charging Effects on Interband Transitions in Two-Dimensional Quantum Dots, Communication in Physics, 19, 65-73 (2009).

Gerhard Klimeck, Introduction to Quantum Dot Lab, accessed on 18 December 2015. Available from https://www.nanohub.org/resources/4194

Hollenberg L et al. (2004) Charge-based quantum computing using single donors in semiconductors, Phys Rev B 69:11330

Ioffe Semiconductor, accessed on 10 December 2015. Available from http://www.ioffe.ru/SVA/NSM/Semicond.

Lam. H. Nguyen, V. Le Thanh, V. Yam, D. Débarre, M. Halbwax, and D. Bouchier (2004), Formation and optical properties of Ge quantum dots selectively grown on patterned Si(001) substrates, Physica Status Solidi (a), 20, 1353.

Michler P, Kiraz A, Becher C, Schoenfeld W, Petroff P, Zhang L, Hu E, Imamoglu A (2000) A Quantum Dot Single-Photon Turnstile Device. Science 290:2282-2285.

Moreau E, Robert I, Manin L, Thierry-Mieg V, Gérard J, Abram I (2001) Quantum Cascade of Photons in Semiconductor Quantum Dots. Phys Rev Lett 87:183601

Nguyen Thanh Tien, Tran Hong Nghia (2014), Mô phỏng transistor hiệu ứng trường dây nano kẽm oxit, Tạp chí Khoa học Trường Đại học Cần Thơ, 30a, 20.

Nguyễn Vũ (2006), Chế tạo và nghiên cứu tính chất quang học của vật liệu nano phát quang chứa ion đất hiếm, Luận án Tiến sĩ khoa học Vật liệu, Viện Khoa học Vật liệu, Hà Nội.

Petroff P (2003) Single Quantum Dots: Fundamentals, Applications, and New Concepts. Springer, Berlin.

Reed M, Randall J, Aggarwal R, Matyi R, Moore T, and Wetsel A (1988) Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. Phys Rev Lett 60:535.

Reed M (1993) Quantum Dots. Scientific American 268:118.

Petroff P (2003) Single Quantum Dots: Fundamentals, Applications, and New Concepts. Springer, Berlin.

V. V. Hoang (2007), Molecular Dynamics Simulation of Amorphous SiO2 Nanoparticles, J. Phys. Chem. B, 111 (44), 12649–12656.