Ảnh hưởng của chất mang và tỷ lệ chủng đến khả năng sống và hoạt tính protease của Bacillus spp. trong chế phẩm vi sinh
Abstract
By-products from seafood processing plants in the Mekong Delta contain about 40% protein. Many treatment methods have been studied to reuse this protein source, including the use of protease-producing bacteria. In this study, the survival ability and protease activity of a microbial mixture comprising three Bacillus strains (B. subtilis, B. flexus, and B. stratosphericus) in various carrier formulas and at different microbial ratios were investigated. The results showed that a 1:1:1 ratio of the bacterial mixture in a carrier containing 95% rice bran and 5% molasses resulted in the highest survival ability of bacteria and protease activity. After 2, 4, and 6 months of storage, the initial density of 6.96×109 decreased to 5.08×109, 3.73×109, and 1.11×109 (CFU/g), respectively; while protease activity decreased from 204.1 UI/g to 187.8, 130.6, and 70.2 (UI/g), respectively. The probiotic product preserved after 2, 4, and 6 months was able to decompose 53.7%, 47.7% and 39.5% of total protein in seafood by-products.
Tóm tắt
Phế phụ phẩm từ các cơ sở giết mổ gia cầm ở đồng bằng sông Cửu Long chứa khoảng 15 - 25% protein. Nhiều phương pháp xử lý đã được nghiên cứu để tái sử dụng nguồn protein này trong đó có việc sử dụng vi khuẩn sinh protease. Trong nghiên cứu này, khả năng sống sót và hoạt tính protease của hỗn hợp vi sinh gồm ba chủng Bacillus (B. subtilis, B. flexus, B. stratosphericus) trong các công thức chất mang khác nhau, tỷ lệ vi sinh khác nhau đã được khảo sát. Kết quả cho thấy tỷ lệ 1:1:1 của hỗn hợp vi khuẩn trong chất mang chứa cám gạo 95% và mật đường 5% giúp khả năng sống sót của vi khuẩn và hoạt tính protease được sinh ra cao nhất. Sau 2, 4, 6 tháng bảo quản, từ mật số ban đầu 6,96×109 giảm còn lần lượt là 5,08×109, 3,73×109 và 1,11×109 (CFU/g); hoạt tính protease từ 204,1 UI/g giảm lần lượt còn 187,8; 130,6 và 70,2 (UI/g). Chế phẩm bảo quản sau 2, 4, 6 tháng có khả năng phân giải 53,7%, 47,7% và 39,5% protein tổng số trong phụ phẩm thủy sản.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Anson, M. L. (1938). The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. Journal of Physiology, 22, 79–89. https://doi.org/10.1085/jgp.22.1.79
Vajiheh, D., Zohreh, H. E., & Morteza, K. A. (2024). Improvement of the valuable compounds of fish waste through solid-state fermentation with probiotics. Applied Food Research, 4(2), 1-8. https://doi.org/10.1016/j.afres.2024.100534
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein – dye binding. Anal Biochem, 72, 248–254.
Boominadhan, U., Rajakumar, R., Sivakumaar, P. K. V., & Joe, M. (2009). Chungbuk National University Optimization of Protease Enzyme Production Using Bacillus Sp. Isolated from Different Wastes. Botany Research International, 2(2), 83-87. https://doi.org/10.1006/abio.1976.9999
Bajaj, B. K, Sharma, N., Singh, S. (2013). Enhanced production of fibrinolytic protease from Bacillus cereus NS – 2 using cotton seed cake as nitrogen source. Biocatalysis and Agricultural Biotechnology, 2, 204–209. https://doi.org/10.1016/j.bcab.2013.04.003
Dias, D. R., Vilela, D. M., Silvestre, M. P. C., & Schwan, R. R. (2008). Alkaline protease from Bacillus sp. isolated from coffee bean grown on cheese whey. World Journal of Microbiology and Biotechnology, 24, 2027–2034. https://doi.org/10.1007/s11274-008-9706-6
Dang, A. H., Nguyen, O. T. P., & Nguyen, K. D. (2017). Selection of carrier materials for the antagonistic Bacillus aerophilus against rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Can Tho University Journal of Science, 52, 8–15 (in Vietnamese). https://doi.org/10.22144/ctu.jvn.2017.118
Dang, H. A., Nguyen, D. K., Le, N. X. T. (2019). Selection of carrier materials for formulation of the antagonistic Bacillus spp. against rice bacterial leaf blight. Can Tho University Journal of Science, 11(3), 19–27 (in Vietnamese). https://doi.org/10.22144/ctu.jen.2019.034
Doan, T. T. N., & Doan, T. T. K. (2023). Isolation, screening and survey of culture conditions of Protease-producing bacteria from poultry slaughterhouses in Tien Giang. Ho Chi Minh city University of Education Journal of Science, 20(10) (in Vietnamese)., 1696-1706. 10.54607/hcmue.js.20.10.3931(2023)
Hassan, M. A., Haroun, B. M., Amara, A. A., & Serour, E. A. (2013). Production and Characterization of Keratinolytic Protease from New Wool-Degrading Bacillus Species Isolated from Egyptian Ecosystem. BioMed Research International, 2013, 14. https://doi.org/10.1155/2013/175012
Gabriela, P., Greice, C. R., Alexandre, J. C., Leila, Q. Z., Eduardo, J. L., Juliano, S. B., Roger, W., & Cristiano, R. M. (2019). Study of viability and storage stability of Lactobacillus acidophillus when encapsulated with the prebiotics rice bran, inulin and Hi-maize. Food Hydrocolloids, 95, 238-244. https://doi.org/10.1016/j.foodhyd.2019.04.049
Kexin, R., Qiang W., Mengkai, H., Yan, C., Rufan, X., Jiajia, Y.,Meijuan, X., Xian, Z. (2022). Research Progress on the Effect of Autolysis to Bacillus subtilis Fermentation Bioprocess. Fermentation 2022, 8(12), 685. https:// doi.org/10.3390/fermentation8120685
Kaur, R., Kaur, S., Dwibedi, V., Kaur, C., Akhtar, N., & Alzahrani, A. (2023). Development and characterization of rice bran-gum Arabic based encapsulated biofertilizer for enhanced shelf life and controlled bacterial release. Front. Microbiol, 14, 1267730. https://doi.org/10.3389/fmicb.2023.1267730
Liu, R. L., Huang, C. L., & Feng, H. (2015). Salt strees represses production of extracellular protease in Bacillus pumilus. Genetics and Molecular Research, 14(2), 4939-4948. http://dx.doi.org/10.4238/2015.May.11.27.
Le, Y. T. H., & Nguyen, H. D. (2016). Evaluation of the probiotic properties of Bacillus subtilis strains isolated from the Mekong Delta. Can Tho University Journal of Science, (Agriculture) 26–32 (in Vietnamese). https://doi.org/10.22144/ctu.jsi.2016.040.
Maragkoudakis, P. A., Zoumpopouloua, G., Miarisa C., Kalantzopoulosa, G., Potb, B., & Tsakalidou, E. (2006). Probiotic potential of Lactobacillus strains isolated from dairy products. International Dairy Journal, 16, 189–199. https://doi.org/10.1016/j.idairyj.2005.02.009
Nguyen, P. V., & Phan, T. T. P. (2014). Isolating, identifying and determining the beneficial properties of Bacillus spp. strains from shrimp ponds in Ben Tre province. Ho Chi Minh City University of Education Journal of Science, 4, 94–102 (in Vietnamese).
Nguyen, P. T. M., Vo, B. H., Tran, N. T., & Do, H. H. (2015). Preparation of protein isolated from rice bran. Academia Journal of Biology, 37(4), 479 – 486 (in Vietnamese). https://doi.org/10.15625/0866-7160/v37n4.7091
Nguyen, N. T. H., Nguyen, H. L., Tran, H. K., Nguyen, T. K. B., Luong, T. H. (2016). Study on the production of microbial inoculants for treating solid waste from cassava starch processing to produce bio-organic fertilizer. VNU Journal of Science: Earth and Environmental Sciences, 32(1S), 282–288 (in Vietnamese).
Pham, T. N., Le, T. T. T., Le, L. T. M., & Le, K. N. (2013). Research on production of microbial preparations to treat postharvest agricultrural by-products. Vietnam Journal of Science and Technology, 24, 58–62 (in Vietnamese).
Shikha, Sharran, A., & Darmwal, N. S. (2007) Improved production of alkaline protease from a mutant of alkalophilic Bacillus pantotheneticus using molasses as a substrate. Bioresource Technology, 98, 881-885. https://doi.org/10.1016/j.biortech.2006.03.023
Singh, P., Rani, A., & Chaudhary, N. (2015). Isolation and characterization of protease producing Bacillus sp from soil. International Journal of Pharma Sciences and Research, 6, 633–639.
Singh, S., & Bajaj, B. K. (2016). Bioprocess optimization for production of thermoalkali-stable protease from Bacillus subtilis K-1 under solid-state fermentation. Preparative Biochemistry and Biotechnology, 46(7), 717–724. https://doi.org/10.1080/10826068.2015.1135455
Singh, S., & Bajaj, B. K. (2017). Agroindustrial/Forestry Residues as Substrates for Production of Thermoactive Alkaline Protease from Bacillus licheniformis K-3 Having Multifaceted Hydrolytic Potential. Waste and Biomass Valor, 8(2), 453-462. https://doi.org/10.1007/s12649-016-9577-2
Tran, N. T. H., Le, H. T., Truong, B. Q., & Truong, H. P. T. (2012). Investigation of the application of protease enzyme from bacteria Bacillus subtilis for the hydrolysis of Pangasius by-products. Journal of Agricultural and Forestry Science and Technology – Nong Lam University, Ho Chi Minh City, 3/2012 (in Vietnamese).
Tran, T. L., Phan, T. N. T., & Nguyen, D. T. A. (2023). Studying Production of Protein Hydrolysates from Fish By-Products using Bacillus sp. Research Journal of Biotechnology, 18(8), 1–10 (in Vietnamese). https://doi.org/10.25303/1808rjbt01010
Truong T. M. T., & Le T. M. R. (2020). Hydrolysis for fish seasoningpower product from Tracatfish flesh (Pangasianodonhypophthalmus) by usingalcalase and flavourzymeenzyme mixture. Can Tho Journal of Science, 56(3B), 160-167 (in Vietnamese).
Uyar, F., & Baysal, Z. (2004) Production and optimization of process parameters for alkaline protease production by a newly isolated Bacillus sp. under solid state fermentation. Process Biochemistry, 39, 1893-1898. https://doi.org/10.1016/j.procbio.2003.09.016
Ministry of Agriculture and Rural Development. (2010) Promulgation of the Regulation on Production, Trading and Use of Fertilizers. (Number 6/2010/TT-BNNPTNT) (in Vietnamese).
Le, H. H. (2014). Fisheries Development in the Mekong Delta: Expansion of the Processing Industry. Vietnam News Agency (in Vietnamese). https://bom.so/ZC1QTN