Châu Văn Đan Trần Chí Nhân *

* Tác giả liên hệ (tcnhan@ctu.edu.vn)

Abstract

A study aimed to determine the drying kinetics model and quality changes of vacuum-dried Centella asiatica powder under a vacuum pressure of 96 ± 0.5 kPa at temperatures of 40, 45, and 50°C. The results showed that increasing the temperature accelerated the drying process. The Lewis model was identified as the most suitable for describing the vacuum drying kinetics of Centella asiatica, particularly at 45°C, with R², χ², and RMSE values of 0.9978, 0.0002, and 0.0141, respectively. At 45°C, the effective moisture diffusivity (Deff) reached 7.72×10⁻¹² m²·s⁻¹, and the activation energy (Ea) was 40.89 kJ·mol⁻¹. Moreover, the vacuum-dried powder at 45°C maintained good quality, exhibiting stable color parameters (L* = 62.91±0.38; a* = -6.19±0.17; b* = 27.05±0.80) and a final water activity (aw) of 0.457±0.02. The powder also retained high levels of antioxidant compounds and radical scavenging capacity (TPC = 67.33 ± 0.69 mg GAE/g, TFC = 36.86±0.87 mg QE/g, DPPH = 8.86±0.21 mg TE/g). Additionally, a strong correlation was observed between L*, a*, b*, TPC, TFC, DPPH, and aw values, with correlation coefficients (r) of -0.8179; 0.9505; 0.9824; 0.7631; 0.5698; and 0.5919, respectively.

Keywords: Centella asiatica, color, drying kinetics, flavonoid, phenolic content, vacuum drying, water activity

Tóm tắt

Nghiên cứu được thực hiện nhằm xác định mô hình động học và sự biến đổi chất lượng bột rau má sấy chân không (96±0,5 kPa) ở 40, 45 và 50°C. Kết quả cho thấy nhiệt độ tăng thúc đẩy tốc độ quá trình sấy. Mô hình Lewis được xác định là phù hợp để mô tả động học sấy chân không rau má, đặc biệt tại 45°C, với giá trị R², χ² và RMSE  lần lượt là 0,9978; 0,0002 và 0,0141. Tại 45°C, hệ số khuếch tán ẩm (Deff​) đạt 7,72×10-12 m².s⁻¹ và năng lượng hoạt hóa (Ea) là 40,89 kJ.mol⁻¹. Bên cạnh đó, bột rau má sấy chân không ở 45°C duy trì tốt về chất lượng với màu sắc ổn định (L* = 62,91±0,38; a* = -6,19±0,17; b* = 27,05±0,80), độ hoạt động của nước ở cuối quá trình sấy (aw​) là 0,457±0,02. Hàm lượng hợp chất chống oxy hóa, khả năng trung hòa gốc tự do cao (TPC = 67,33±0,69 mg GAE/g, TFC = 36,86±0,87 mg QE/g, DPPH = 8,86±0,21 mg TE/g). Ngoài ra, kết quả cũng ghi nhận sự tương quan cao giá trị L*, a*, b*, TPC, TFC, DPPH và aw​ (r = -0,8179; 0,9505; 0,9824; 0,7631; 0,5698 và 0,5919; tương ứng).

Từ khóa: Động học sấy, flavonoid, hoạt độ nước, màu sắc, phenolic, rau má, sấy chân không

Article Details

Tài liệu tham khảo

Adeyi, O., Adeyi, A. J., & Oke, E. O. (2018). Empirical modeling of thin layer drying characteristics of nauclea latifolia leaves. Journal of the Nigerian Society of Chemical Engineers, 13(10), 17-25.

Alara, O. R., Abdurahman, N. H., & Olalere, O. A. (2019). Mathematical modelling and morphological properties of thin layer oven drying of Vernonia amygdalina leaves. Journal of the Saudi Society of Agricultural Sciences, 18(3), 309-315. https://doi.org/10.1016/j.jssas.2017.09.003

Arabshahi-D, S., Devi, D. V., & Urooj, A. (2007). Evaluation of antioxidant activity of some plant extracts and their heat, pH and storage stability. Food Chemistry, 100(3), 1100-1105. https://doi.org/10.1016/j.foodchem.2005.11.014

Ayensu, A. (1997). Dehydration of food crops using a solar dryer with convective heat flow. Solar Energy, 59(4-6), 121-126. https://doi.org/10.1016/S0038-092X(96)00130-2

Bai, J. (2014). Drying characteristics and quality of seedless grapes under vacuum drying. Journal of Food Processing and Preservation, 38(1), 170-177. https://doi.org/10.1111/j.1745.4549.2012.00770.x

Correa, R. A., Resende, O., Goneli, A. L. D., & Mauger, C. L. R. (2011). Drying kinetics and energy activation of jatropha curcas L. seeds. Brazilian Archives of Biology and Technology, 54, 671-678. http://dx.doi.org/10.4025/actasciagron.v33i4.7079

Das, S. K., & Singh, B. (2018). Effect of vacuum drying on physicochemical and antioxidant properties of spinach (Spinacia oleracea L.). Journal of Food Processing and Preservation, 42(3), e13550.
https://doi.org/ 10.1111/jfpp.13550.

Doymaz, I. (2004). Drying characteristics of laurel leaves under vacuum. Journal of Food Engineering, 62(1), 67-73. http://dx.doi.org/10.1016/S0260-8774(03)00142-0

Guo, H.-L., Chen, Y., Xu, W., Xu, M.-T., Sun, Y., Wang, X.-C., Wang, X.-Y., Luo, J., Zhang, H., & Xiong, Y.-K. (2022). Assessment of drying kinetics, textural and aroma attributes of Mentha haplocalyx leaves during the hot air thin-layer drying process. Foods, 11(6), 784. https://doi.org/10.3390/foods11060784

Hashim, P., Sidek, H., Helan, M. H. M., Sabariah, M. N., & Khoo, Y. C. (2011). In vitro antioxidant activity, total phenolic and flavonoid content of Centella asiatica. International Food Research Journal, 18(4), 1211-1215. https://doi.org/10.3390/molecules16021310

Henderson, S. M., & Pabis, S. (1961). Grain drying theory I: Temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 6(3), T69-T74. https://doi.org/10.5555/19621700719

How, Y. K., & Siow, L. F. (2020). Effects of convection-, vacuum-and freeze-drying on antioxidant, physicochemical properties, functional properties and storage stability of stink bean (Parkia speciosa) powder. Journal of Food Science and Technology, 57(12), 4637-4648.
https://doi.org/10.1007/s13197-020-04501-7

Koua, K. B., Soro, D., & Kouame, G. (2017). Drying shrinkage of food materials: A review. Food Reviews International, 33(4), 387-410. https://doi.org/10.1111/1541-4337.12375

Larrauri, J. A., Rupérez, P., & Saura-Calixto, F. (1997). Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. Journal of agricultural and food chemistry, 45(4), 1390-1393. https://doi.org/10.1021/jf960282f

Li, Y., Li, P., Yang, K., He, Q., Wang, Y., Sun, Y., He, C., & Xiao, P. (2021). Impact of drying methods on phenolic components and antioxidant activity of sea buckthorn (Hippophae rhamnoides L.) berries from different varieties in China. Molecules, 26(23), 7189. https://doi.org/10.3390/molecules26237189

Matias D. S., G., Bissaro, C. A., de Matos Jorge, L. M., & Rossoni, D. F. (2019). The fractional calculus in studies on drying: A new kinetic semi‐empirical model for drying. Journal of Food Process Engineering, 42(1), e12955.
https://doi.org/10.1111/jfpe.12955

Nguyen, N. M. P., Le, T. T., Vissenaekens, H., Gonzales, G. B., Van Camp, J., Smagghe, G. & Raes, K. (2019). In vitro antioxidant activity and phenolic profiles of tropical fruit by-products. International Journal of Food Science and Technology, 54(4), 1169-1178. https://doi.org/10.1111/ijfs.14093

Nguyen, T. V., Vuong, Q. V., Bowyer, C. M., Van Altena, A. I., & Scarlett, J. C. (2015). Effects of different drying methods on bioactive compound yield and antioxidant capacity of Phyllanthus amarus. Drying Technology, 33(8), 1006–1017. https://doi.org/10.1080/07373937.2015.1022920

Ozdemir, M., & Floros, J. D. (2004). Active food packaging technologies. Critical reviews in food science and nutrition, 44(3), 185-193. https://doi.org/10.1080/10408690490441578

Page, G. E. (1949). Factors influencing the maximum rates of air drying shelled corn in thin-layers (Unpublished master's thesis). Purdue University.

Pala, M., & Ergin, D. (2021). Drying kinetics and effective moisture diffusivity of mint leaves in a vacuum dryer. Journal of Food Processing and Preservation, 45(1), e15082. https://doi.org/10.3136/fstr.27.181

Pathare, P. B., Opara, U. L., & Al-Said, F. A. (2013). Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology, 6(1), 36-60. https://doi.org/10.1007/s11947-012-0867-9

Pham, D. C., Nguyen, H. C., Nguyen, T. H. L., Ho, H. L., Trinh, T. K., Riyaphan, J., & Weng, C. F. (2020). Optimization of ultrasound ‐ assisted extraction of flavonoids from Celastrus hindsii leaves using response surface methodology and evaluation of their antioxidant and antitumor activities. BioMed Research International, 1, 1-9. https://doi.org/10.1155/2020/3497107

Roberts, J. S., Kidd, D. R., & Padilla-Zakour, O. (2008). Drying kinetics of grape seeds. Journal of Food Engineering, 89(4), 460-465. https://doi.org/10.1016/j.jfoodeng.2008.05.030

Sacilik, K., & Elicin, A. K. (2006). The thin layer drying characteristics of organic apple slices. Journal of Food Engineering, 73, 281-289. https://doi.org/10.1016/j.jfoodeng.2005.03.024

Santos, J., Herrero, M., Mendiola, J. A., Oliva-Teles, M. T., Ibáñez, E., Delerue-Matos, C., & Oliveira, M. B. P. P. (2014). Fresh-cut aromatic herbs: Nutritional quality stability during shelf-life. LWT-Food Science and Technology, 59(1), 101-107. https://doi.org/10.1016/j.lwt.2014.05.019

Senevirathna, S. S. J., Ramli, N. S., Azman, E. M., Juhari, N. H., & Karim, R. (2021). Optimization of the drum drying parameters and citric acid level to produce purple sweet potato (Ipomoea batatas L.) powder using response surface methodology. Foods, 10(6), 1378. https://doi.org/10.3390/foods10061378

Sharaf-Elden, Y. I., Blaisdell, J. L., & Hamdy, M. Y. (1980). A model for ear corn drying. Transactions of the ASAE, 5, 1261-1265. https://doi.org/10.13031/2013.34757

Toğrul, İ. T., & Pehlivan, D. (2002). Mathematical modelling of solar drying of apricots in thin layers. Journal of Food Engineering, 55(3), 209-216.
https://doi.org/10.1016/S0260-8774(02)00065-1

Tran, N. C., Le, N. U., Kieu, V. M., Nguyen, A. T., Luu, D. T., & Nguyen P. M. N. (2024). Effects of drying techniques on moisture content, color and bioactive compounds of Perilla frutescens leaves. Journal of Agriculture and Rural Development, (9), 66–73 (in Vietnamese).

Tran, N. C., Le, T. N., Tran, H. T. C., Tran, N. T., Luu, D. T., Nguyen, P. M. N., & Do, N. T. T. (2023). Influence of drying method on the quality of Ehretia asperula Zoll. & Mor. leaf powder. Journal of Agriculture and Rural Development, (2), 273–280 (in Vietnamese).

Tran, N. T. Y., Dao, P. T., Tran, L. T. K., Nguyen, D. D., Ung, D. T., Huynh, L. B., Mai, C. H., Nguyen, D. T., Nguyen, A. V., Huynh, P. X., & Tran, Q. N. (2021). The effect of drying temperature on bioactive compounds in 'Da Xanh' pomelo peel (Citrus maxima Burm. Merr.). Can Tho University Journal of Science, 57, 177-182 (in Vietnamese). https://doi.org/10.22144/ctu.jsi.2021.020

Tripathy, S., & Srivastav, P. P. (2023). Effect of dielectric barrier discharge (DBD) cold plasma-activated water pre-treatment on the drying properties, kinetic parameters, and physicochemical and functional properties of Centella asiatica leaves. Chemosphere, 332, 138901. https://doi.org/10.1016/j.chemosphere.2023.138901

Vega-Gálvez, A., Lemus-Mondaca, R., Bilbao-Sáinz, C., Yagnam, F., & Rojas, A. (2008). Mass transfer kinetics during convective drying of red pepper var. Hungarian (Capsicum annuum L.): Mathematical modeling and evaluation of kinetic parameters. Journal of Food Process Engineering, 31(1), 120-137. https://doi.org/10.1111/j.1745-4530.2007.00145.x

Verma, L. R., Bucklin, R. A., Endan, J. B., & Wratten, F. T. (1985). Effects of drying air parameters on rice drying models. Transactions of the ASAE, 28, 296-301. https://doi.org/10.13031/2013.32245

Wang, C. Y., & Singh, R. P. (1978). Use of variable equilibrium moisture content in modeling rice drying. Transactions of American Society of Agricultural Engineers, 11, 668-672.

White, G. M., Ross, I. J., & Ponelert, R. (1981). Fully exposed drying of popcorn. Transactions of the ASAE, 24, 466 - 468. https://doi.org/10.13031/2013.34276

Widjaja, R., & Wijayapala, L. K. (2020). Effect of different drying methods on the physicochemical and antioxidant properties of Centella asiatica leaves. Journal of Food Science and Technology, 57(12), 4381-4390. https://doi.org/10.1007/s13197-020-04473-5

Xie, L., Shi, X., Pu, H., Sun, D. W., & Wang, Y. (2017). Effects of vacuum drying on drying characteristics and quality of goji berries (Lycium barbarum L.). Food and Bioprocess Technology, 10(11), 1957-1967. https://doi.org/10.1007/s11947-017-1959-1

Xu, H., Wu, M., Zhang, T., Gao, F., Zheng, Z., & Li, Y. (2022). Effects of different pulsed vacuum drying strategies on drying kinetics, phenolic composition, and antioxidant capacity of chrysanthemum (Imperial chrysanthemum). International Journal of Agricultural and Biological Engineering, 15(4), 236-242. https://doi.org/10.25165/j.ijabe.20221504.7359

Youssef, K. M., & Mokhtar, S. M. (2014). Effect of drying methods on the antioxidant capacity, color and phytochemicals of Portulaca oleracea L. leaves. Journal of Nutrition & Food Sciences, 4(6), 1-6. https://doi.org/10.4172/2155-9600.1000322