Đoàn Xuân Diệp * , Đỗ Thị Thanh Hương Nguyễn Thanh Phương

* Tác giả liên hệĐoàn Xuân Diệp

Abstract

Black tiger shrimp (Penaeus monodon) has been farmed in a wide range of salinity but the animal may grow differently in relation with salinity. The objective of the research was to find out the effects of salinity on feed utilization and basic oxygen consumption of black tiger shrimp. The experiments were conducted with shrimp juvenile (10±2 g) at four salinity levels including 3, 15, 25 and 35?. Feed consumption and gastric digestion periods were conducted in the plastic tanks of 1 m3 in volume. Ten stomaches of shrimp in each salinity level were collected after feeding 20 and 40 minutes and 1, 2, 3, 4 and 5 hrs. in order to identify feed amount in stomach and feed gastric digestion. The apparent digestibility coefficients of feed, protein and energy of shrimp were identified by Cr2O3 marked feed method and conducted randomly in composite tanks of 0.5 m3 each with three replicates for each the salinity. Basic oxygen consumption was determined by respirometer, ten shrimps were measured separately at each of different salinities for 24 hours. The results of research showed that the black tiger shrimp juvenile was able to adjust the physiological responses to limit the loss of energy to adapt to low salinity. The daily feeding frequency should be increased as shrimp culture in the lower salinities.
Keywords: digestibility, oxygen consumption, black tiger shrimp

Tóm tắt

Tôm sú (Penaeus monodon) đang được nuôi ở nhiều vùng có độ mặn khác nhau và sinh trưởng của tôm có thể khác nhau theo từng độ mặn. Nghiên cứu nhằm tìm hiểu ảnh hưởng của độ mặn lên sử dụng thức ăn và tiêu hao oxy cơ sở của tôm sú (Penaeus monodon). Các thí nghiệm được thực hiện trên tôm sú giống (10±2 g) ở các độ mặn 3?, 15?, 25? và 35?. Thời gian sử dụng và tiêu hóa thức ăn của tôm sú được tiến hành trên bể nhựa 1 m3, dạ dày tôm được thu sau khi cho tôm ăn lúc 20 và 40 phút và 1, 2, 3, 4 và 5 giờ, mỗi nhịp thu 10 tôm ở mỗi độ mặn để xác định lượng thức ăn, thời gian tôm sử dụng và tiêu hóa hết thức ăn trong dạ dày. Độ tiêu hóa thức ăn, đạm và năng lượng của tôm được tiến hành trên bể composite 0,5m3 với phương pháp bố trí hoàn toàn ngẫu nhiên và lặp lại ba lần. Xác định độ tiêu hóa được thực hiện thông qua thức ăn có chất đánh dấu o-xit crom (Cr2O3). Tiêu hao oxy của tôm được xác định bằng hệ thống hô hấp kế với 10 cá thể tôm được đo riêng biệt ở mỗi độ mặn trong 24 giờ. Kết quả nghiên cứu cho thấy rằng tôm sú có khả năng điều chỉnh hoạt động sinh lý cơ thể nhằm hạn chế sự mất năng lượng để thích nghi với độ mặn thấp. Khi nuôi tôm ở độ mặn thấp thì cần tăng tần suất cho tôm ăn trong ngày nhiều hơn ở độ mặn cao.
Từ khóa: độ mặn, khả năng tiêu hóa, tiêu hao oxy, tôm sú

Article Details

Tài liệu tham khảo

AOAC. 2000. Official Methods of Analysis. Association of Offi cial Analytical Chemists Arlington. Bo Gohl. 1993. Thức ăn gia súc nhiệt đới. Nhà xuất bản Nông nghiệp, 547p.

Bergot, F. and Breque, J., 1983. Digestibility of starch by rainbow trout: effects of the hysical state of starch and of the in-take level. Aquaculture, 34(3-4):203-212.

Bindu, R.P. and Diwan, A.D., 2002. Effects of acute salinity stress on oxygen consumption and ammonia excretion rotes of the marine shrimp Metapenaeus monoceros. Journal Crustacean Biology, 22(1):45-52.

Burggren, W.W., Moreira, G.S. and Santos, M.F., 1993. Specific dynamic action and the metabolism of the brachyuran land crabs Ocypode quadrata (Fabricus 1787), Goniopsis cruentata (Latreille 1803) and Cardiosoma guanhumi (Latreille 1825). J. Exp. Mar. Biol. Ecol. 169:117-130.

Carefoot, T.H., 1990. Specific dynamic action (SDA) in the supralittoral isopod Ligia pallasii: identification of components of apparent specific dynamic action and effects of dietary amino acid quality and content on SDA. Comparative Biochemistry and Physiology, 95A:309-316.

Castille, F.L.Jr. and Lawrence, A.L., 1981. The e¡ect of salinityon the osmotic sodium and chloride concentrations in the haemolymph of the freshwater shrimps, Macrobrachium ohione Smith and Macrobrachium rosenbergii de Man. Comparative Biochemistry and Physiology, 70A:47-53.

Chanratchakool, P., Turnbull, J. F., Funge-Smith, S. & Limsuwan, C., 1995. Health management in shrimp ponds (2nd ed). Aquatic Animal Health Research Institute, Bangkok.

Chen, J.C. and Nan, F.H., 1993. Changes of oxygen consumption and ammonia-N excretion by Penaeus chinensis Osbeck at different temperature and salinity levels. J. Crusact. Biol. 13:706-712.

Cho, C.Y., Hynes, J.D., Wood, K.R., Yoshida, H.K., 1994. Development of high-nutrient-dense, low-pollution diets and prediction of aquaculture wastes using biological approaches. Aquaculture, 124(1-4):293-305.

DeSilva, S.S. and Anderson, T.A., 1995. Fish Nutrition in Aquaculture. Aquaculture Series 1. Chapman & Hall, London. p 128.

Femandes, B. and Achulhankutty, C.T., 1997. Role of salinity on food conversion efficiency and growth in juvenile Penaeid shrimp Metapenaeus dobsoni (Crustacea/Arthropoda). Indian Journal of Marine sciences, 26:31-34.

Furukawa, H. and Tsukahara, H., 1966. On the acid digestion method for chromium oxide as an index substance in the study of digestibílity of the Japanese Society of Scientific Fisheries 32(6):502.508.

Garber, J., 1983. Effect of fish size, meal size and dietary moisture on gastric evacuation of pelleted diets by yellow perch (Perca glavescens). Aquaculture, 34(1-2):41-49.

Henken, A.M., Kleingeld, D.W., Tijssen, P.A.T., 1985. The effect of feeding level on apparent digestibility of dietary dry matter, crude protein and gross energy in the African catfish Clarias gariepinus (Burchell, 1822). Aquaculture, 51(1):1-11

Hertrampf, J., 2006. Factros influencing feed digestibility. Fish Tech. WWW.AgriWorld.nl. p31

Hewitt, D. R. and Irving, M. G., 1990. Oxygen consumption and ammonia excretion of the brown tiger prawn Penaeus esculentus fed diets of varying protein content. Comparative Biochemistry and Physiology, 96(3):373-378.

Houlihan, D.F., Waring, C.P., Mathers, E. and Gray, C., 1990. Protein synthesis and oxygen consumption of the shore crab Carcinus maenas after a meal. Physiol. Zool. 63:735-756.

Kutty, M.N., Murugapoopathy, G., Krishnan, T.S., 1971. Influence of salinity and temperature on the oxygen consumption in young juveniles of the Indian prawn Penaeus indicus. Mar. Biol. 11:125-131.

Lee, P.G., Smith, L.L., Lawrence, A.L., 1984. Digestive protease of Penaeus vannamei Boone: relationship between enzyme activity, size and diet. Aquaculture, 42(3-4): 225-239.

Lei, S.J., 2006. Effects of ration level and feeding frequency on digestibility in juvenile soft-shelled turtle, Pelodiscus sinensis. Journal of Zhejiang University. Science B, 7(7):580-585.

Li, E., Chen, L., Zeng, C., Yu, N., Xiong, Z., Chen, X., Jian, G. and Qin, J.G., 2008. Comparison of digestive and antioxidant enzymes activities, haemolymph oxyhemocyanin contents and hepatopancreas histology of white shrimp, Litopenaeus vannamei, at various salinities. Aquaculture, 274(1):80-86.

Lima, A. G., McNamara, J. C. and Terra, W.R., 1997. Regulation of hemolymph osmolytes and gill Na+/K+-ATPase activities during acclimation to saline media in the freshwater shrimp Macrobrachium olfersii (Wiegmann,1836) (ecapoda, Palaemonidae). J. Exp. Mar. Biol. Ecol. 215: 81–91.

Lovett, D.L. and Felder, D.L., 1990. Ontogenic change in digestive enzyme activity of larval and postlarval white shrimp Penaeus setiferus (Crustacea, Decapoda, Penaeidae). Biol. Bull. 178: 144-159.

Mente, E., 2003. Nutrition, Physiology and Metabolism of Crustaceans. Enfield, NH: Science Publishers

Parado-Estepa, F.D., Ferraris, R.P., Ladja, J.M. and Dejesus, E.G., 1987. Responses of intermolt Penaeus indicus to large fluctuations in environmental salinity. Aquaculture, 64:175-184.

Rosas, C., Ocampo, L., Gaxiola, G., Shchez, A. and Soto, L.A., 1999b. Effect of salinity on survival, growth and oxygen consumption of postlarvae (PL1O-PL21) of Penaeus setiferus. Journal of Crustacean Biology, 19:67-75.

Rosas, C., López, N., Mercado, P. and Martínez, E., 2001. Effect of Salinity Acclimation on Oxygen Consumption of Juveniles of the White Shrimp Litopenaeus vannamei. Journal of Crustacean Biology, 21(4)912-922.

Staples, D.J. and Heales, D.S., 1991. Temperature and salinity optima for growth and survival ofjuvenile banana prawn Penueus merguiensis. Journal Experimental Marine Biologycal Ecology, 154: 251-274.

Vahl, O., 1979. An hypothesis on the control of food intake in fish. Aquaculture, 17(3):221-229.

Van Wormhoudt, A., 1973. Variation des proteases, des amylases et des proteins solubles au cours du développement larvaire chez Palaemon serratus. Marine Biology, 19: 245-248.

Venkataramaiah, A., Lakhsmi, G.J. and Gunter, G., 1972. The effects of salinity, temperature and feeding level on the food conversion, growth and survival rates of the shrimp Penaeus azrecus. Marine Technology Society, Food-Drugs from the Sea Proceedings: 29-42.

Wilson, W.Tr., Adalto, B., Cecilia, C.S. and Henrique, P.L., 2003. The effect of temperature, salinity and nitrogen products on food consumption of pink shrimp Farfantepenaeus paulensis. Braz. arch. biol. technol. 46(1):135-141.

Windell, J.T., 1978. Effect of fish size, temperature amount fed on nutrient digestibility of a pelleted die rainbow trout (Salmo gairdneri). Trans. Am. Fish, 107(4):613-616.

Xie, S.Q., Cui, Y.B., Yang, Y.X., Liu, J.K., 1997. Energy budget of Nile tilapia (Oreochromis nilotius) in relation to ration size. Aquaculture, 154(1):57-68.

Ye, L., Jiang, S., Zhu, X., Yang, Q., Wen, W. and Wu, K., 2009. Effects of salinity on growth and energy budget of juvenile Penaeus monodon. Aquaculture, 290(1-2):140-144.