Nguyễn Hồng Khôi Nguyên , Lê Như Bình , Nguyễn Thị Kiều Diễm Trần Bạch Long *

* Tác giả liên hệ (tblong@ctu.edu.vn)

Abstract

This study evaluated the effects of drying temperature and storage duration on the total polyphenol content (TPC), total flavonoid content (TFC), and antioxidant activity (TEAC) of Cordyceps militaris substrate powder. The substrate was dried at 50ºC, 60ºC, and 65ºC, and the resulting powders were stored for eight weeks. TPC, TFC, TEAC, moisture content, water activity (aw), and color parameters (L*, a*, b*) were monitored throughout storage. Results showed that drying temperature had a significant impact on the quality of the powder. Drying at 60ºC yielded the highest values of TPC (2.25 ± 0.14 mg GAE/g dry weight), TFC (22.91 ± 0.08 mg QE/100 g dry weight), and TEAC (31.33 µmol TE/g dry weight). During storage, TPC, TFC, and TEAC declined, whereas moisture content and aw increased. Color changes indicated a reduction in lightness and an increase in redness and yellowness, likely due to oxidative reactions.

Keywords: Antioxidant activity, drying, flavonoid, polyphenol, powder, storage

Tóm tắt

Nghiên cứu này được thực hiện với mục đích đánh giá ảnh hưởng của nhiệt độ sấy và thời gian bảo quản đến hàm lượng polyphenol tổng số (TPC), flavonoid tổng số (TFC) và hoạt tính chống oxy hóa (TEAC) của bột đế nấm đông trùng hạ thảo. Nguyên liệu được sấy ba mức nhiệt 50ºC, 60ºC và 65ºC, bột đế nấm được theo dõi trong 8 tuần để đánh giá sự biến đổi về TPC, TFC, TEAC, độ ẩm, hoạt độ nước (aw) và màu sắc (L*, a*, b*). Kết quả cho thấy nhiệt độ sấy ảnh hưởng đáng kể đến chất lượng bột. Ở 60ºC, TPC (2,25±0,14 mg GAE/g CKNL), TFC (22,91±0,08 mg QE/100 g CKNL) và TEAC (31,33 µmol TE/g CKNL) đạt giá trị cao nhất. Trong thời gian bảo quản, TPC, TFC và TEAC giảm dần, trong khi độ ẩm và aw tăng. Màu sắc thay đổi theo hướng giảm độ sáng và tăng sắc đỏ, vàng – phản ánh tác động của quá trình oxy hóa.

Từ khóa: Bảo quản, bột đế nấm, flavonoid, nhiệt độ sấy, hoạt tính chống oxy hóa, polyphenol

Article Details

Tài liệu tham khảo

Al-Dabbas, M. M., Moumneh, M., Hamad, H. J., Abughoush, M., Abuawad, B., Al-Nawasrah, B.A. A. & Iqbal, S. (2023). Impact of Processing and Preservation Methods and Storage on Total Phenolics, Flavonoids, and Antioxidant Activities of Okra (Abelmoschus esculentus L.). Foods, 12(19), 3711. https://doi.org/10.3390/foods12193711

Ampah, J., Dzisi, K. A., Addo, A., Bart-Plange, A. (2022). Drying kinetics and chemical properties of mango. International Journal of Food Science, 2022(1), 6243228. https://doi.org/10.1155/2022/6243228.

Antony, A., & Farid, M. (2022). Effect of temperatures on polyphenols during extraction. Applied Sciences, 12(4), 2107. https://doi.org/10.3390/app12042107.

AOAC. (2005). Official Method 934.06: Moisture in dried fruits. In W. Horwitz & G. W. Latimer Jr. (Eds.), Official methods of analysis of AOAC International (18th ed., Rev. 2). AOAC International.

Aslan, M., & Ertaş, N. (2020). Foam drying of aquafaba: Optimization with mixture design. Journal of Food Processing and Preservation, 45(3), e15185. https://doi.org/10.1111/jfpp.15185.

Bai, X., Tan, T. Y., Li, Y. X., Li, Y., Chen, Y. F., Ma, R., Wang, S. Y., Li, Q., & Liu, Z. Q. (2020). The protective effect of cordyceps sinensis extract on cerebral ischemic injury via modulating the mitochondrial respiratory chain and inhibiting the mitochondrial apoptotic pathway. Biomedicine & Pharmacotherapy, 124, 109834. https://doi.org/10.1016/j.biopha.2020.109834

Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C. M. (2022). Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules (Basel, Switzerland), 27(4), 1326. https://doi.org/10.3390/molecules27041326.

Belwal, T., Cravotto, C., Prieto, M. A., Venskutonis, P. R., Daglia, M., Devkota, H. P., Baldi, A., Ezzat, S. M., Gómez-Gómez, L., Salama, M. M., Campone, L., Rastrelli, L., Echave, J., Jafari, S. M., & Cravotto, G. (2022). Effects of different drying techniques on the quality and bioactive compounds of plant-based products: A critical review on current trends. Drying Technology, 40(8), 1539-1561. https://doi.org/10.1080/07373937.2022.2068028.

Čagalj, M., Skroza, D., Tabanelli, G., Özogul, F., & Šimat, V. (2021). Maximizing the antioxidant capacity of Padina pavonica by choosing the right drying and extraction methods. Processes, 9(4), 587. https://doi.org/10.3390/pr9040587.

Cao, H., Saroglu, O., Karadag, A., Diaconeasa, Z., Zoccatelli, G., Conte-Junior, C. A., Gonzalez-Aguilar, G. A., Ou, J., Bai, W., Zamarioli, C. M., de Freitas, L. A. P., Shpigelman, A., Campelo, P. H., Capanoglu, E., Hii, C. L., Jafari, S. M., Qi, Y., Liao, P., Wang, M., Zou, L., Bourke, P., Simal-Gandara, J., & Xiao, J.. (2021). Available technologies on improving the stability of polyphenols in food processing. Food Frontiers, 2(2), 109-139. https://doi.org/10.1002/fft2.65.

Chaiya, D., Phungamngoen, C., Eadmusik, S., Sriwichai, W., & Subcharoen, E. (2021). Pretreatment enhanced the physical and antioxidant stability of dried Cordyceps militaris by different drying conditions. In E3S Web of Conferences, 302, 02005. https://doi.org/10.1051/e3sconf/202130202005.

Cheng, H., Xu, H., McClements, D. J., Chen, L., Jiao, A., Tian, Y., Miao, M., & Jin, Z. (2022). Recent advances in intelligent food packaging materials: Principles, preparation and applications. Food Chemistry, 375, 131738. https://doi.org/10.1016/j.foodchem.2021.131738.

Chou, Y. C., Sung, T. H., Hou, S. J., Khumsupan, D., Santoso, S. P., Cheng, K.C., & Lin, S. P. (2024). Current Progress Regarding Cordyceps militaris, Its Metabolite Function, and Its Production. Applied Sciences, 14(11), 4610. https://doi.org/10.3390/app14114610.

Delfiya, D. A., Prashob, K., Murali, S., Alfiya, P. V., Samuel, M. P., & Pandiselvam, R. (2022). Drying kinetics of food materials in infrared radiation drying: A review. Journal of Food Process Engineering, 45(6), e13810. https://doi.org/10.1111/jfpe.13810.

ElGamal, R., Song, C., Rayan, A. M., Liu, C., Al-Rejaie, S., & ElMasry, G. (2023). Thermal degradation of bioactive compounds during drying process of horticultural and agronomic products: A comprehensive overview. Agronomy, 13(6), 1580. https://doi.org/10.3390/agronomy13061580.

El-Wahhab, G. G., Sayed, H. A. A., Abdelhamid, M. A., Zaghlool, A., Nasr, A., Nagib, A., Bourouah, M., Abd-ElGawad, A. M., Rashad, Y. M., Hafez, M., & Taha, I. M. (2023). Effect of Pre-Treatments on the Qualities of Banana Dried by Two Different Drying Methods. Sustainability, 15(20), 15112. https://doi.org/10.3390/su152015112.

Esmaeilzadeh, K. R., & Razavi, R. (2022). Phenolic profile and antioxidant activity of free/bound phenolic compounds of sesame and properties of encapsulated nanoparticles in different wall materials. Food science & Nutrition, 10(2), 525-535. https://doi.org/10.1002/fsn3.2712.

Guiné, R. (2018). The drying of foods and its effect on the physical-chemical, sensorial and nutritional properties. International Journal of Food Engineering, 4(2), 93-100. https://doi.org/10.18178/ijfe.4.2.93-100.

Hoang, H. L., Hoang, C. V., Nguyen, D. H, Nguyen, V. Q (2021). Effect of drying methods on the contents ofbioactive components and biological activities of leaves and trunk-bark of eunonymus laxiflorus champ. Collected in yok don national park, dak lak province. The University of Danang - Journal of Science and Technology, 19(2), 1-6 (in Vietnamese).

Jędrejko, K. J., Lazur, J., & Muszyńska, B. (2021). Cordyceps militaris: An Overview of Its Chemical Constituents in Relation to Biological Activity. Foods, 10(11), 2634. https://doi.org/10.3390/foods10112634.

Kontogiannatos, D., Koutrotsios, G., Xekalaki, S., & Zervakis, G. I. (2021). Biomass and Cordycepin Production by the Medicinal Mushroom Cordyceps militaris-A Review of Various Aspects and Recent Trends towards the Exploitation of a Valuable Fungus. Journal of fungi (Basel, Switzerland), 7(11), 986. https://doi.org/10.3390/jof7110986.

Lavefve, L., Brownmiller, C., Howard, L., Reeves, D., Adams, S. H., Chen, J. R., Diaz, E. C., & Mauromoustakos, A. (2020). Changes in Polyphenolics during Storage of Products Prepared with Freeze-Dried Wild Blueberry Powder. Foods (Basel, Switzerland), 9(4), 466. https://doi.org/10.3390/foods9040466.

Li, S. P., Yang, F. Q., Tsim, K. W. K. (2006). Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. Journal of Pharmaceutical and Biomedical Analysis, 41(5), 1571–1584. https://doi.org/10.1016/j.jpba.2006.01.046

Ling, J.-Y., Sun, Y.-J., Zhang, H., Lv, P., & Zhang, Z.-K. (2002). Measurement of cordycepin and adenosine in stroma of Cordyceps sp. by capillary zone electrophoresis (CZE). Journal of Bioscience and Bioengineering, 94(4), 371–374. https://doi.org/10.1016/S1389-1723(02)80181-5

Lohinova, A., & Petrusha, O. (2023). Maillard reaction in food technologies. Ukrainian Journal of Food Science, 11(2), 81-109. https://doi.org/10.24263/2310-1008-2023-11-2-4.

Manalu, L. P., Adinegoro, H., Yustiningsih, N., Astuti, Luthfiyanti, R., Maisaroh, Purwanto, W., Subandrio, Pongtuluran, Q. B., Atmaji, P., Hidayat, T., Henanto, H., Asgar, A., Nasori, A. S., Triyono, A., Elya, B., Arif, A. B. (2025). Impact of Drying Methods on Bioactive Compounds and Antioxidant Properties of Kalanchoe ceratophylla. Scientifica, 25(1), 01-12. https://doi.org/10.1155/sci5/7146758.

Maria, S. T., Stella, M. A., & Jorge, C. (2020). Effects of water activity (aw) on microbial stability as a hurdle in food preservation. In G. V. Barbosa-Cánovas, A. J. Fontana Jr., S. J. Schmidt, & T. P. Labuza (Eds.), Water activity in foods: Fundamentals and applications (2nd ed., Chapter 14). Wiley-Blackwell. https://doi.org/10.1002/9781118765982.ch14.

Molole, G. J., Gure, A., & Abdissa, N. (2022). Determination of total phenolic content and antioxidant activity of Commiphora mollis (Oliv.) Engl. resin. BMC Chemistry, 16, 48. https://doi.org/10.1186/s13065-022-00841-x.

Muniz, V. R. G. D. F., Ribeiro, I. S., Beckmam, K. R. L., & Godoy, R. C. B. D. (2023). The impact of color on food choice. Brazilian Journal of Food Technology, 26, e2022088. https://doi.org/10.1590/1981-6723.08822.

Nyangena, I., Owino, W., Ambuko, J., & Imathiu, S. (2019). Effect of selected pretreatments prior to drying on physical quality attributes of dried mango chips. Journal of Food Science and Technology, 56, 3854–3863. https://doi.org/10.1007/s13197-019-03857-9.

Nguyen, Q. V., Bui Thi, B. H., Tran, M. D., Nguyen, M. T., Doan, M. D., Nguyen, A. D., Le, T. M., Tran, V. C., & Pham, T. N. (2022). Impact of different drying temperatures on in vitro antioxidant and antidiabetic activities and phenolic compounds of wild guava leaves collected in the Central Highland of Vietnam. Natural Product Communications, 17(4), 1–10. https://doi.org/10.1177/1934578X221095349.

Nguyen, T. T., & Chuyen, N. V. (2020). Drying techniques and their effects on bioactive compounds in plants: A review. Journal of Agricultural and Food Chemistry, 68(9), 2553–2571 (in Vietnamese).

Tran, N.T.Y., Dao, P.T ., Tran, L.T. K., Nguyen, D. D., Ung, D. T., Huynh, B. L., Mai, C., Nguyen, T. T., Nguyen, V. A., Huynh, L. B., Mai, C.H., Nguyen, D. T., Nguyen, A.V., Huynh, P. H & Tran, Q. N. (2021). Effects of convection drying temperature on phytochemicals in pomelo’s flavedo (Citrus maxima Burm. Merr.). Can Tho University Journal of Science, 57, 177–182. https://doi.org/10.22144/ctu.jsi.2021.020 (In Vietnamese).

Ontawong, A., Pengnet, S., Thim-Uam, A., Chiranthanut, N., Srimachai, S., & Usuwanthim, K. (2024). A randomized controlled clinical trial examining the effects of Cordyceps militaris beverage on the immune response in healthy adults. Scientific Reports, 14, 7994. https://doi.org/10.1038/s41598-024-58742-z.

Ongprasert, K., Siviroj, P., Ruangsuriya, J., Malasao, R., Phanpong, C., & Limtrakul, D. (2021). Stability of the Trolox Equivalent Antioxidant Capacity (TEAC) of Human Milk Frozen at–20 Cfor 6 Months. Journal of Food and Nutrition Research, 9(4), 199-205. https://doi.org/10.12691/jfnr-9-4-5.

Phull, A. R., Ahmed, M., & Park, H. J. (2022). Cordyceps militaris as a Bio Functional Food Source: Pharmacological Potential, Anti-Inflammatory Actions and Related Molecular Mechanisms. Microorganisms, 10(2), 405. https://doi.org/10.3390/microorganisms10020405.

Rawat, R., Gupta, A., & Tripathi, N. (2024). Cordyceps militaris as an alternative source of food, nutrition and medicine. World Journal of Advanced Research and Reviews, 22(1), 1600-1620. https://doi.org/10.30574/wjarr.2024.22.1.0767.

Rifna, E. J., Dwivedi, M., & Chauhan, O. P. (2022). Role of water activity in food preservation. In Advances in food chemistry: Food components, processing and preservation (pp. 39–64). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-4796-4_2.

Rodríguez-Mena, A., Ochoa-Martínez, L. A., González-Herrera, S. M., Rutiaga-Quiñones, O. M., González-Laredo, R. F., & Olmedilla-Alonso, B. (2023). Natural pigments of plant origin: Classification, extraction and application in foods. Food Chemistry, 398, 133908. https://doi.org/10.1016/j.foodchem.2022.133908.

Roslan, A. S., Ismail, A., Ando, Y., & Azlan, A. (2020). Effect of drying methods and parameters on the antioxidant properties of tea (Camellia sinensis) leaves. Food Production, Processing and Nutrition, 2(1), 1–11. https://doi.org/10.1186/s43014-020-00022-0

Sharma, H., Sharma, N., & An, S. S. A. (2023). Unique Bioactives from Zombie Fungus (Cordyceps) as Promising Multitargeted Neuroprotective Agents. Nutrients, 16(1), 102. https://doi.org/10.3390/nu16010102.

Shraim, A. M., Ahmed, T. A., Rahman, M. M., & Hijji, Y. M. (2021). Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. Lwt-Food Science and Technology, 150, 111932. https://doi.org/10.1016/j.lwt.2021.111932.

Smiderle, F. R., Sassaki, G. L., Van Griensven, L. J. L. D., & Iacomini, M. (2013). Isolation and chemical characterization of a glucogalactomannan of the medicinal mushroom Cordyceps militaris. Carbohydrate Polymers, 97(1), 74–80. https://doi.org/10.1016/j.carbpol.2013.04.049

Talik, P., & Hubicka, U. (2014). Hydration and drying of various polysaccharides studied using DSC. Journal of Thermal Analysis and Calorimetry, 115(2), 1257–1264. https://doi.org/10.1007/s10973-013-2946-1

Tapia, M. S., Alzamora, S. M., & Chirife, J. (2020). Effects of water activity (aw) on microbial stability as a hurdle in food preservation. In G. V. Barbosa‑Cánovas, A. J. Fontana Jr., S. J. Schmidt, & T. P. Labuza (Eds.), Water Activity in Foods: Fundamentals and Applications (2nd ed., Chapter 14). John Wiley & Sons. https://doi.org/10.1002/9781118765982.ch14 .

Truong, Q. T., Phung, T. T. L., Nguyen, T. P. T., & Nguyen, D. K. (2021). The effects of drying temperature on the content of polyphenol compounds, carotenoids, chlorophyll pigmented and antioxidant activity of the “rau cang cua” (Peperomia pellucida L.) collected in Tien Giang Province. Ho Chi Minh City Open University Journal of Science, Ho Chi Minh City Open University, 16(1), 25–33 (in Vietnamese). https://doi.org/10.46223/HCMCOUJS.tech.vi.16.1.1891.2021.

Vega-Gálvez, A., Di Scala, K., Rodríguez, K., Lemus-Mondaca, R., Miranda, M., López, J., & Pérez-Won, M. (2009). Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chemistry, 117(4), 647–653. https://doi.org/10.1016/j.foodchem.2009.05.014

Vhangani, L. N., & Van Wyk, J. (2021). Heated plant extracts as natural inhibitors of enzymatic browning: A case of the Maillard reaction. Journal of Food Biochemistry, 45(2), e13611. https://doi.org/10.1111/jfbc.13611

Vy, D. T. T., Truc, T. T., & Muoi, N. V. (2020). Impacts of the concentration and ratio of used solvent on the solubility of antioxidant compounds from Nam Roi pomelo peel powder. Journal of Industry and Trade, (24), 51–56.

Wang, M., Meng, X., Yang, R., Qin, T., Li, Y., Zhang, L., Fei, C., Zhen, W., Zhang, K., Wang, X., Hu, Y., & Xue, F. (2013). Cordyceps militaris polysaccharides can improve the immune efficacy of Newcastle disease vaccine in chicken. International Journal of Biological Macromolecules, 59, 178–183. https://doi.org/10.1016/j.ijbiomac.2013.04.007

Wen, Y.-L., Yan, L.-P., & Chen, C.-S. (2013). Effects of fermentation treatment on antioxidant and antimicrobial activities of four common Chinese herbal medicinal residues by Aspergillus oryzae. Journal of Food and Drug Analysis, 21(2), 219–226. https://doi.org/10.1016/j.jfda.2013.05.013.

Zhang, L., Ho, C. T., Zhou, J., Santos, J. S., Armstrong, L., & Granato, D. (2019). Chemistry and biological activities of processed Camellia sinensis teas: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 18(5), 1474–1495. https://doi.org/10.1111/1541-4337.12479.

Zhang, C., Zhang, J., Xin, X., Zhu, S., Niu, E., Wu, Q., Wang, Y., Zhang, Y., Zhao, Y., & Liu, D. (2022). Changes in phytochemical profiles and biological activity of olive leaves treated by two drying methods. Frontiers in Nutrition, 9, 854680. https://doi.org/10.3389/fnut.2022.854680

Zhang, Lei, Zhang, Ao, Zhou, Shanshan, Wang, Qianqian, Hu, Zhenyuan, Li, Chenglin, Hu, Yang, Ma, Haile, & Zhou, Cunshan. (2024). Sweeping-frequency ultrasonic preprocessing improves removal rate and stability of pigment removed from okra powders by different drying and sieving methods. Drying Technology, 42(1), 19–33. https://doi.org/10.1080/07373937.2023.2258980

Zhang, M., Xing, S., Fu, C., Fang, F., Liu, J., Kan, J., Qian, C., Chai, Q., & Jin, C. (2022). Effects of Drying Methods on Taste Components and Flavor Characterization of Cordyceps militaris. Foods (Basel, Switzerland), 11(23), 3933. https://doi.org/10.3390/foods11233933.

Zhang, Y., Truzzi, F., D’Amen, E., & Dinelli, G. (2021). Effect of storage conditions and time on the polyphenol content of wheat flours. Processes, 9(2), 248. https://doi.org/10.3390/pr9020248.