Vai trò của khuyết nguyên tử và điện trường song song trong điều khiển tính chất điện tử của graphene nanoribbons: Sự khác biệt giữa dạng biên armchair và zigzag
Abstract
The study investigates the electronic structure and the transport properties of graphene nanoribbons (GNRs) with both armchair (AGNRs) and zigzag (ZGNRs) edges under the influence of a single-atom vacancy and a transverse electric field by the tight-binding method and Green’s function formalism. For a ribbon width of M = 14, the results indicate that the presence of the two factors leads to a bandgap opening, enabling the material to transition from metallic to semiconducting or insulating behavior. Furthermore, the results also show that the vacancy has a strong effect on AGNRs, while the transverse electric field exerts a stronger influence on ZGNRs. Notably, the combination of both factors produces a pronounced synergistic effect. Therefore, it can be seen that the impact of each type of external stimulus depends on the specific edge configuration and corresponding material structure, leading to distinct beneficial outcomes. As such, the obtained results provide a valuable suggestion for the development of predictive models that apply AGNRs and ZGNRs in future thermoelectric, nanoelectronic, and semiconductor technologies.
Tóm tắt
Đề tài khảo sát cấu trúc điện tử và một số đặc trưng dẫn của graphene nanoribbons (GNRs) theo hai dạng biên armchair (AGNRs) và zigzag (ZGNRs) dưới tác dụng của khuyết một nguyên tử và điện trường song song bằng phương pháp gần đúng liên kết mạnh và phương pháp luận hàm Green. Khảo sát M = 14, kết quả cho thấy rằng, với sự tác động đồng thời của hai tác nhân, độ rộng vùng cấm của vật liệu đã mở ra, vật liệu đã có thể chuyển trạng thái từ kim loại sang bán dẫn - điện môi. Ngoài ra, kết quả cho thấy khuyết nguyên tử đóng vai trò mạnh mẽ trong cấu trúc AGNRs; trong khi đó, ảnh hưởng của điện trường song song lại chiếm ưu thế trong mô hình ZGNRs. Đặc biệt, với sự kết hợp của hai kích thích, hiệu ứng tổng hợp trở nên rõ nét hơn. Như vậy, các kết quả thu được mang ý nghĩa của việc gợi ý phát triển các mô hình tiên đoán, nhằm ứng dụng vật liệu AGNRS và ZGNRs trong các lĩnh vực nhiệt điện, điện tử và bán dẫn trong tương lai.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Anno, Y., Imakita, Y., Takei, K., Akita, S., & Arie, T. (2014). Enhancement of graphene thermoelectric performance through defect engineering. 2D Materials, 2(3), 035009. https://doi.org/10.1088/2053-1583/2/3/035009
Avsar, A., Ochoa, H., Guinea, F., Özyilmaz, B., van Wees, B. J., & Vera-Marun, I. J. (2020). Colloquium: Spintronics in graphene and other two-dimensional materials. Reviews of Modern Physics, 92(2), 021003. https://doi.org/10.1103/RevModPhys.92.021003
Bai, J., Duan, X., & Huang, Y. (2009). Rational fabrication of graphene nanoribbons using a nanowire etch mask. Nano Letters, 9(5), 2083–2087.
https://doi.org/10.1021/nl900531n
Balandin, A. A. (2011). Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 10(8), 569–581. https://doi.org/10.1038/nmat3064
Banhart, F., Kotakoski, J., & Krasheninnikov, A. V. (2011). Structural defects in graphene. ACS Nano, 5(1), 26–41.
https://doi.org/10.1021/nn102598m
Bazrafshan, M. A., & Khoeini, F. (2022). Tuning phononic and electronic contributions of thermoelectric in defected S-shape graphene nanoribbons. Scientific Reports, 12, 15230. https://doi.org/10.1038/s41598-022-19257-1
Brey, L., & Fertig, H. A. (2006). Electronic states of graphene nanoribbons. Physical Review B, 73(23), 235411.
https://doi.org/10.1103/PhysRevB.73.235411
Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A.P., Saleh, M., Feng, X., Müllen, K., & Fasel, R. (2010). Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 466(7305), 470–473.
https://doi.org/10.1038/nature09211
Neto, C. A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109–162. https://doi.org/10.1103/RevModPhys.81.109
Chung, H.-C., Chang, C.-P., Lin, C.-Y., & Lin, M.-F. (2016). Electronic and optical properties of graphene nanoribbons in external fields. Physical Chemistry Chemical Physics, 18(11), 7573–7590.
https://doi.org/10.1039/C5CP06533J
D’Agosta, R. (2013). Towards a dynamical approach to the calculation of the figure of merit of thermoelectric nanoscale devices. Physical Chemistry Chemical Physics, 15, 1758-1765. https://doi.org/10.1039/C2CP42594G
Datta, S. (2005). Quantum transport: Atom to transistor. Cambridge University Press.
https://doi.org/10.1017/CBO9781139164313
Da Cunha, W. F., de Oliveira Neto, P. H. O., Terai, A., & e Silva, G. M. (2016). Dynamics of charge carriers on hexagonal nanoribbons with vacancy defects. Physical Review B, 94(1), 014301.
https://doi.org/10.1103/PhysRevB.94.014301
El-Barbary, A. A., Telling, R. H., Ewels, C. P., Heggie, M. I., & Briddon, P. R. (2003). Structure and energetics of the vacancy in graphite. Physical Review B, 68(14), 144107. https://doi.org/10.1103/PhysRevB.68.144107
Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191.
https://doi.org/10.1038/nmat1849
Guo, J., Gunlycke, D., & White, C. T. (2007). Field effect in graphene nanoribbons: Ab initio study. Applied Physics Letters, 91(14), 143103.
https://doi.org/10.1063/1.2789674
Han, M. Y., Özyilmaz, B., Zhang, Y., & Kim, P. (2007). Energy band-gap engineering of graphene nanoribbons. Physical Review Letters, 98(20), 206805. https://doi.org/10.1103/PhysRevLett.98.206805
Hashimoto, A., Suenaga, K., Gloter, A., Urita, K., & Iijima, S. (2004). Direct evidence for atomic defects in graphene layers. Nature, 430(7002), 870–873.
https://doi.org/10.1038/nature02817
Jafri, S. H. M., Carva, K., Widenkvist, E., Blom, T., Sanyal, B., Fransson, J., Eriksson, O., Jansson, U., Grennberg. H., Karis, O., Quinlan, R. A., Holloway, B. C., & Leifer, K. (2010). Conductivity engineering of graphene by defect formation. Journal of Physics D: Applied Physics, 43(4), 405404.
https://doi.org/10.1088/0022-3727/43/4/045404
Jiao, L., Zhang, L., Wang, X., Diankov, G., & Dai, H. (2009). Narrow graphene nanoribbons from carbon nanotubes. Nature, 458(7240), 877–880.
https://doi.org/10.1038/nature07919
Kolesnikov, D. V., Osipov, V. A., & Sadykova, O. G. (2016). Enhancement of thermoelectric figure of merit in zigzag graphene nanoribbons with periodic edge vacancies. International Journal of Modern Physics B, 31(15), 1750124.
https://doi.org/10.1142/S0217979217501247
Kotakoski, J., Krasheninnikov, A. V., Kaiser, U., & Meyer, J. C. (2011). From point defects in graphene to two-dimensional amorphous carbon. Physical Review Letters, 106(10), 105505.
https://doi.org/10.1103/PhysRevLett.106.105505
Lee, G.-D., Wang, C. Z., Yoon, E., Hwang, N.-M., Kim, D.-Y., & Ho, K.-M. (2008). The formation of pentagon–heptagon pair defect by the reconstruction of a vacancy hole in carbon nanotube. Applied Physics Letters, 92(4), 043104.
https://doi.org/10.1063/1.2837632
Lewenkopf, C. H., & Mucciolo, E. R. (2013). The recursive Green’s function method for graphene. Journal of Computational Electronics. 12(2), 203-231.
https://doi.org/10.1007/s10825-013-0458-7
Li, X., Wang, X., Zhang, L., Lee, S., & Dai, H. (2008). Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 319(5867), 1229–1232.
https://doi.org/10.1126/science.1150878
Liu, L., Qing, M., Wang, Y., & Chen, S. (2015). Defects in graphene: Generation, healing, and their effects on the properties of graphene. Journal of Materials Science & Technology, 31(6), 599–606.
https://doi.org/10.1016/j.jmst.2014.11.019
Lu, Y., & Guo, J. (2010). Band gap of strained graphene nanoribbons. Nano Research, 3(3), 189–199.
https://doi.org/10.1007/s12274-010-1022-4
López-Polín, G., Gómez-Navarro, C., Parente, V., Guinea, F., Katsnelson, M. I., Pérez-Murano, F., & Gómez-Herrero, J. (2015). Increasing the elastic modulus of graphene by controlled defect creation. Nature Physics, 11(1), 26–31.
https://doi.org/10.1038/nphys3183
Martins, T. B., Miwa, R. H., da Silva, A. J. R., & Fazzio, A. (2007). Electronic and transport properties of boron-doped graphene nanoribbons. Physical Review Letters, 98(19), 196803.
https://doi.org/10.1103/PhysRevLett.98.196803
Nair, R. R., Sepioni, M., Tsai, I.-L., Lehtinen, O., Keinonen, J., Krasheninnikov, A. V., Thomson, T., & Geim, A. K (2012). Spin-half paramagnetism in graphene induced by point defects. Nature Physics, 8(3), 199–202.
https://doi.org/10.1038/nphys2183
Nanda, B. R. K., Sherafati, M., Popović, Z., & Satpathy, S. (2012). Electronic structure of the substitutional vacancy in graphene: Density-functional and Green's function studies. New Journal of Physics, 14, 083004
https://doi.org/10.1088/13672630/14/8/083004
Nguyen, T. K. Q., Pham, N. H. H., & Vu, T., T. (2024). The influence of the vacancy and the external electric field in the electronic structure and the thermoelectric of monolayer armchair graphene nanoribbons. CTU Journal of Science, 60, 185-193.
http://doi.org/10.22144/ctujos.2024.370
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669.
https://doi.org/10.1126/science.1102896
Palacios, J. J., Fernández-Rossier, J., & Brey, L. (2008). Vacancy-induced magnetism in graphene and graphene ribbons. Physical Review B, 77(19), 195428.
http://dx.doi.org/10.1103/PhysRevB.77.195428
Pereira, A. L. C., & Schulz, P. A. (2008). Additional levels between Landau bands due to vacancies in graphene: towards a defect engineering. Physical Review B, 78(12), 125402.
https://doi.org/10.1103/PhysRevB.78.125402
Raza, H., & Kan, E. C. (2008). Armchair graphene nanoribbons: Electronic structure and electric field modulation. Physical Review B, 77(24), 245434. https://doi.org/10.1103/PhysRevB.77.245434
Ribeiro, L.A., da Silva, G.G., de Sousa, R.T., de Almeida Fonseca, A. L., da Cunha, W.F., & Silva, G. M. (2018). Spin-Orbit Effects on the Dynamical Properties of Polarons in Graphene Nanoribbons. Scientific Reports, 8, 1914.
https://doi.org/10.1038/s41598-018-19893-y
Ruffieux, P., Wang, S., Yang, B., Sánchez-Sánchez, C., Liu, J., Dienel, T., Talirz, L., Shinde, P., Pignedoli, C. A., Passerone, D., Dumslaff, T., Feng, X., Müllen, K., & Fasel, R. (2016). On-surface synthesis of graphene nanoribbons with atomically precise edges. Nature, 531(7595), 489–492.
https://doi.org/10.1038/nature17151
Sahan, Z., & Berber, S. (2020). Monovacancy in achiral and chiral graphene nanoribbons. Computational Condensed Matter, 23(5696), e00471.
https://doi.org/10.1016/j.cocom.2020.e00471
Son, Y. W., Cohen, M. L., & Louie, S. G. (2006). Energy gaps in graphene nanoribbons. Physical Review Letters, 97(21), 216803.
https://doi.org/10.1103/PhysRevLett.97.216803
Teweldebrhan, D., Goyal, V., & Balandin, A. A. (2010). Controlling defects in graphene for optimizing the electrical properties of graphene nanodevices. ACS Nano, 4(11), 6697–6704. https://doi.org/10.1021/nn101187z
Trauzettel, B., Bulaev, D. V., Loss, D., & Burkard, G. (2007). Spin qubits in graphene quantum dots. Nature Physics, 3(3), 192–196.
https://doi.org/10.1038/nphys544
Ugeda, M. M., Brihuega, I., Guinea, F., & Gómez-Rodríguez, J. M. (2010). Missing atom as a source of carbon magnetism. Physical Review Letters, 104(9), 096804.
https://doi.org/10.1103/PhysRevLett.104.096804
Wakabayashi, K., Sasaki, K.-i., Nakanishi, T., & Enoki, T. (2010). Electronic states of graphene nanoribbons and analytical solutions. Science and Technology of Advanced Materials, 11(5), 054504.
https://doi.org/10.1088/1468-6996/11/5/054504
Wang, X., Ouyang, Y., Li, X., Wang, H., Guo, J., & Dai, H. (2008). Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Physical Review Letters, 100(20), 206803.
https://doi.org/10.1103/PhysRevLett.100.206803
Yazyev, O. V., & Helm, L. (2007). Defect-induced magnetism in graphene. Physical Review B, 75(12), 125408.
https://doi.org/10.1103/PhysRevB.75.125408
Yazyev, O. V. (2008). Magnetism in disordered graphene and irradiated graphite. Physical Review Letters, 101(3), 037203.
https://doi.org/10.1103/PhysRevLett.101.037203
Yazyev, O. V. (2010). Emergence of magnetism in graphene materials and nanostructures. Reports on Progress in Physics, 73(5), 056501.
https://doi.org/10.1088/0034-4885/73/5/056501
Yu, S. S., Wen, Q. B., Zheng, W. T., & Jiang, Q. (2008). Electronic properties of graphene nanoribbons with armchair-shaped edges. Molecular Simulation, 34(10-15), 1085-1090.
https://doi.org/10.1080/08927020801958795
Zandiatashbar, A., Lee, G.-H., An, S. J., Lee, S., Mathew, N., Terrones, M., Hayashi, T., Picu, C. R., Hone, J., & Koratkar, N. (2014). Effect of defects on the intrinsic strength and stiffness of graphene. Nature Communications, 5, 3186.
https://doi.org/10.1038/ncomms4186
Zhang, Y., & Guo, W. (2020). Stone–Wales defect and vacancy-assisted enhanced atomic orbital interactions between graphene and ambient gases: A first-principles insight. Journal of Physical Chemistry C, 124(50), 27528–27536.
https://doi.org/10.1021/acs.jpcc.0c08395
Zhang, Y., Li, X., & Wang, J. (2022). Effect of Vacancy Defects on the Vibration Frequency of Graphene Nanoribbons. Nanomaterials, 12(5), 764.
https://doi.org/10.3390/nano12050764
Zheng, H., & Xie, X. C. (2009). Tuning the band gap of graphene nanoribbons by transverse electric fields. Applied Physics Letters, 94(6), 062107.
https://doi.org/10.1063/1.3080612
Zhou, W., Lee, J., Nanda, J., Pantelides, S. T., & Pennycook, S. J. (2012). Atomically resolved imaging of the structure, morphology, and dynamics of dislocations in graphene. Nature Communications, 3, 1124.
https://doi.org/10.1038/ncomms2128
Zobelli, A., Ewels, C. P., Gloter, A., & Seifert, G. (2007). Vacancy migration in graphene monolayers: Atomistic simulations. Physical Review B, 75(24), 245402. https://doi.org/10.1103/PhysRevB.75.245402