Lâm Phúc Thông * , Nguyễn Minh Nhựt Đặng Huỳnh Giao

* Tác giả liên hệ (lpthong@ctu.edu.vn)

Abstract

Antibiotic contamination poses a significant threat to both the ecological environment and human health. The conventional methods for removing antibiotics from water sources have become a significant challenge. The adsorption process has been considered as a potential approach due to its high effectiveness in removing antibiotics, particularly at low concentrations. Among various adsorbents, biochar derived from agricultural waste has garnered particular attention in contaminant treatment due to its favorable characteristics, low-cost production, and eco-friendly nature. Studies reported that biochar-based adsorbents performed well in removing antibiotics compared to other adsorbents, potentially achieving a maximum adsorption capacity exceeding 550 mg/g, while their production costs ranged between 0.35 and 1.2 USD/kg, which is significantly cheaper than that of the others. Therefore, biochar has been considered an emerging approach for antibiotic treatment in Vietnam.

Keywords: Adsorption, agricultural waste, antibiotics, biochar, contaminant treatment

Tóm tắt

Ô nhiễm kháng sinh trong môi trường nước đang trở nên ngày càng nghiêm trọng cho môi trường và sức khỏe con người cũng như động vật. Các phương pháp xử lý kháng sinh hiện nay đang là thách thức quan trọng và chưa thể hiện được hiệu quả cao. Hấp phụ cho thấy được tiềm năng trong việc xử lý hiệu quả kháng sinh, nhất là ở nồng độ thấp. Trong các loại vật liệu hấp phụ, than sinh học (TSH) từ phụ phẩm nông nghiệp ngày càng được quan tâm trong việc xử lý các ô nhiễm môi trường do có đặc tính tốt, chi phí sản xuất thấp và thân thiện với môi trường. TSH cho thấy được hiệu quả xử lý kháng sinh cao so với các loại vật liệu khác với dung lượng hấp phụ tối đa có thể đạt hơn 550 mg/g, trong khi chi phí sản xuất chỉ trong khoảng từ 0,35 đến 1,2 USD/kg, thấp hơn đáng kể so với các loại vật liệu khác. Kết quả cho thấy TSH đang được xem là một trong những giải pháp tiềm năng để giải quyết hiệu quả ô nhiễm kháng sinh ở Việt Nam.

Từ khóa: Hấp phụ, kháng sinh, phụ phẩm nông nghiệp, than sinh học, xử lý chất ô nhiễm

Article Details

Tài liệu tham khảo

Ahmaruzzaman, M. (2021). Biochar based nanocomposites for photocatalytic degradation of emerging organic pollutants from water and wastewater. Materials Research Bulletin, 140, 111262.
https://doi.org/https://doi.org/10.1016/j.materresbull.2021.111262

Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., Johir, M. A. H., & Sornalingam, K. (2017). Single and competitive sorption properties and mechanism of functionalized biochar for removing sulfonamide antibiotics from water. Chemical Engineering Journal, 311, 348-358. https://doi.org/https://doi.org/10.1016/j.cej.2016.11.106

Ambaye, T. G., Vaccari, M., van Hullebusch, E. D., Amrane, A., & Rtimi, S. (2021). Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. International Journal of Environmental Science and Technology, 18(10), 3273-3294.
https://doi.org/10.1007/s13762-020-03060-w

Bartoli, M., Giorcelli, M., & Tagliaferro, A. (2023). A Comprehensive Overview on Biochar-Based Materials for Catalytic Applications. Catalysts, 13(10).
https://doi.org/10.3390/catal13101336

Chau, T. A., & Nguyen, T. Q. T. (2024). Enhancing methyl violet removal performance of chemically modified biochar derived from corncob (Bachelor's thesis). Can Tho University (in Vietnamese).

Chen, T., Luo, L., Deng, S., Shi, G., Zhang, S., Zhang, Y., Deng, O., Wang, L., Zhang, J., Wei, L. (2018). Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure. Bioresource Technology, 267, 431-437. https://doi.org/https://doi.org/10.1016/j.biortech.2018.07.074

Dai, Y., Liu, M., Sun, Y., Li, J., Jiang, Y., Li, S., Yue, W., Liu, Z. (2019). Adsorption characteristics of tetracycline on biochar from agricultural wastes. Desalination and Water Treatment, 151, 384-391. https://doi.org/https://doi.org/10.5004/dwt.2019.23829

Dang, T. N. C., & Trương, T. N. L. (2023). Biochar preparation from rice straw and its application for Dibenzofuran removal (Bachelor's thesis). Can Tho University (in Vietnamese).

Diao, Y., Shan, R., Li, M., Gu, J., Yuan, H., & Chen, Y. (2023). Efficient Adsorption of a Sulfonamide Antibiotic in Aqueous Solutions with N-doped Magnetic Biochar: Performance, Mechanism, and Reusability. ACS Omega, 8(1), 879-892. https://doi.org/10.1021/acsomega.2c06234

Hoang, L. P., Nguyen, T. M. P., Van, H. T., Yılmaz, M., Hoang, T. K., Nguyen, Q. T., Vi, H. T. M., Nga, L. T. Q. (2022). Removal of Tetracycline from aqueous solution using composite adsorbent of ZnAl layered double hydroxide and bagasse biochar. Environmental Technology & Innovation, 28, 102914.
https://doi.org/https://doi.org/10.1016/j.eti.2022.102914

Krasucka, P., Pan, B., Sik Ok, Y., Mohan, D., Sarkar, B., & Oleszczuk, P. (2021). Engineered biochar – A sustainable solution for the removal of antibiotics from water. Chemical Engineering Journal, 405, 126926.
https://doi.org/https://doi.org/10.1016/j.cej.2020.126926

Le, T. H. (2024). Evaluation of the effect of biochar on soil amendment (Bachelor's thesis). Can Tho University.

Le, T. N. L. (2023). Biochar preparation from sugarcane bagasse, Durian Peels, coconut fiber, corncob, and jackfruit peel for Basic Fuchsine removal (Bachelor's thesis). Can Tho University (in Vietnamese).

Liang, L., Xi, F., Tan, W., Meng, X., Hu, B., & Wang, X. (2021). Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar, 3(3), 255-281.
https://doi.org/10.1007/s42773-021-00101-6

Liu, P., Liu, W.-J., Jiang, H., Chen, J.-J., Li, W.-W., & Yu, H.-Q. (2012). Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology, 121, 235-240.
https://doi.org/https://doi.org/10.1016/j.biortech.2012.06.085

Liu, Y., Zhu, X., Qian, F., Zhang, S., & Chen, J. (2014). Magnetic activated carbon prepared from rice straw-derived hydrochar for triclosan removal [10.1039/C4RA11815D]. RSC Advances, 4(109), 63620-63626.
https://doi.org/10.1039/C4RA11815D

Liu, Z., & Balasubramanian, R. (2012). Hydrothermal Carbonization of Waste Biomass for Energy Generation. Procedia Environmental Sciences, 16, 159-166.
https://doi.org/https://doi.org/10.1016/j.proenv.2012.10.022

Mai, X. T. (2024). Removal of basic Fuchsine in aqueous solution by activated biochar derived from Durian Peels (Bachelor's thesis). Can Tho University (in Vietnamese).

Mullen, C. A., Boateng, A. A., Goldberg, N. M., Lima, I. M., Laird, D. A., & Hicks, K. B. (2010). Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass and Bioenergy, 34(1), 67-74. https://doi.org/https://doi.org/10.1016/j.biombioe.2009.09.012

Nguyen, N. M., Le, T.T.C, Huynh, H. L., Dang, G. H., Doan, T. D. V., Ho, P. Q. (2022). Biomass from agricultural wastes: Potentials and applications in renewable energy in the Mekong Delta (in Vietnamese). CTU Journal of Science, 58, 201-213 (in Vietnamese). Doi:10.22144/ctu.jvn.2022.206

Nguyen, T.-K.-T., Nguyen, T.-B., Chen, W.-H., Chen, C.-W., Kumar Patel, A., Bui, X.-T., Chen, L., Singhania, R. R., Dong, C.-D. (2023). Phosphoric acid-activated biochar derived from sunflower seed husk: Selective antibiotic adsorption behavior and mechanism. Bioresource Technology, 371, 128593.
https://doi.org/https://doi.org/10.1016/j.biortech.2023.128593

Nguyen, T. T. L., & Nguyen, M. T. (2024). Enhancing Ciprofloxacin removal performance using chemically modified biochar from sugarcane bagasse (Bachelor's thesis). Can Tho University (in Vietnamese).

Vo, N. H., & Dang, S. H. (2025). Preparation of chemically modified biochar from rice straw for Ciprofloxacin removal (Bachelor's thesis). Can Tho University (in Vietnamese).

Ouda, M., Kadadou, D., Swaidan, B., Al-Othman, A., Al-Asheh, S., Banat, F., Hasan, S. W. (2021). Emerging contaminants in water bodies of the Middle East and North Africa (MENA): A critical review. Science of the Total Environment. 754 (1).
https://doi.org/10.1016/j.scitotenv.2020.142177

Phan, G. H., & Tran, T. N. (2024). Crystal violet removal from aqueous solution by chemically modified biochar from rice husk (Bachelor's thesis). Can Tho University (in Vietnamese).

Phan, K. X. (2023). Biochar preparation from coconut fiber for tetracycline removal (Bachelor's thesis). Can Tho University (in Vietnamese).

Sajjadi, B., Chen, W.-Y., & Egiebor, N. O. (2019). A comprehensive review on physical activation of biochar for energy and environmental applications. 35(6), 735-776. https://doi.org/doi:10.1515/revce-2017-0113 (Reviews in Chemical Engineering)

Sajjadi, B., Zubatiuk, T., Leszczynska, D., Leszczynski, J., & Chen, W. Y. (2018). Chemical activation of biochar for energy and environmental applications: a comprehensive review. 35(7), 777-815.
https://doi.org/doi:10.1515/revce-2018-0003

Sen, U., Esteves, B., Aguiar, T., & Pereira, H. (2023). Removal of Antibiotics by Biochars: A Critical Review. Applied Sciences, 13(21). https://doi.org/10.3390/app132111963

Severino, M. I., Freitas, C., Pimenta, V., Nouar, F., Pinto, M. L., & Serre, C. (2025). Cost Estimation of the Production of MIL-100(Fe) at Industrial Scale from Two Upscaled Sustainable Synthesis Routes. Industrial & Engineering Chemistry Research, 64(5), 2708-2718. https://doi.org/10.1021/acs.iecr.4c02618

Severino, M. I., Gkaniatsou, E., Nouar, F., Pinto, M. L., & Serre, C. (2021). MOFs industrialization: a complete assessment of production costs [10.1039/D1FD00018G]. Faraday Discussions, 231(0), 326-341. https://doi.org/10.1039/D1FD00018G

Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913-933.
https://doi.org/https://doi.org/10.1016/j.fuel.2009.10.022

Wakejo, W. K., Meshasha, B. T., Kang, J. W., Chebude, Y., & Hua, M. (2022). Enhanced Ciprofloxacin Removal from Aqueous Solution Using a Chemically Modified Biochar Derived from Bamboo Sawdust: Adsorption Process Optimization with Response Surface Methodology. Adsorption Science & Technology, 2022, 2699530. https://doi.org/10.1155/2022/2699530

Xiang, Y., Xu, Z., Wei, Y., Zhou, Y., Yang, X., Yang, Y., Yang, J., Zhang, J., Luo L., Zhou, Z. (2019). Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors. Journal of Environmental Management, 237, 128-138.
https://doi.org/https://doi.org/10.1016/j.jenvman.2019.02.068

Xie, Y., Wang, L., Li, H., Westholm, L. J., Carvalho, L., Thorin, E., Yu Z., Yu, X., Skreiberg, Ø. (2022). A critical review on production, modification and utilization of biochar. Journal of Analytical and Applied Pyrolysis, 161, 105405. https://doi.org/https://doi.org/10.1016/j.jaap.2021.105405

Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 28, e00570. https://doi.org/https://doi.org/10.1016/j.btre.2020.e00570

Zeng, Z.-w., Tan, X.-f., Liu, Y.-g., Tian, S.-r., Zeng, G.-m., Jiang, L.-h., Liu, S., Li, J., Liu, N., Yin, Z.-h. (2018). Comprehensive Adsorption Studies of Doxycycline and Ciprofloxacin Antibiotics by Biochars Prepared at Different Temperatures [Original Research]. Volume 6 - 2018. https://doi.org/10.3389/fchem.2018.00080