Công nghệ tách ion điện dung (CDI) trong xử lý nước thải: Cơ chế, ứng dụng và triển vọng phát triển
Abstract
Water is an essential resource for life and sustainable human development. Increasing water pollution and freshwater scarcity have become serious global challenges. In this context, capacitive deionization (CDI) technology has been attracting growing attention due to its outstanding advantages, including low energy consumption, high treatment efficiency, reasonable cost, environmental friendliness, and the reusability of electrode materials. This article provides a systematic overview of the operating principles, system configurations, electrode materials, and key applications of CDI technology—not only in desalination but also in the removal of heavy metals, organic compounds, nutrients, and microorganisms. The paper also analyzes current opportunities and challenges, while proposing future research directions to expand the application of CDI in water treatment in Vietnam.
Tóm tắt
Nước là tài nguyên thiết yếu đối với sự sống và sự phát triển bền vững của con người. Tình trạng ô nhiễm nguồn nước và khan hiếm nước ngọt ngày càng trở thành những thách thức nghiêm trọng trên toàn cầu. Trong bối cảnh đó, công nghệ tách ion điện dung (CDI) đã và đang thu hút sự quan tâm nhờ các ưu điểm nổi bật như tiêu thụ năng lượng thấp, hiệu quả xử lý cao, chi phí hợp lý, thân thiện với môi trường và khả năng tái sử dụng của vật liệu điện cực. Bài báo này được thực hiện nhằm trình bày tổng quan có hệ thống về nguyên lý hoạt động, cấu hình, vật liệu điện cực, và các ứng dụng nổi bật của công nghệ CDI, không chỉ trong khử muối mà còn trong loại bỏ kim loại nặng, hợp chất hữu cơ, chất dinh dưỡng và vi sinh vật. Trong nghiên cứu, việc phân tích cơ hội và thách thức đã được tiến hành, đồng thời các định hướng nghiên cứu tiếp theo cũng đã được đề xuất nhằm mở rộng ứng dụng công nghệ CDI trong xử lý nước tại Việt Nam.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Abdullah, N., Yusof, N., Lau, W. J., Jaafar, J., & Ismail, A. F. (2019). Recent trends of heavy metal removal from water/wastewater by membrane technologies. Journal of Industrial and Engineering Chemistry, 76, 17-38. https://doi.org/10.1016/j.jiec.2019.03.029
Adorna Jr, J., Borines, M., & Doong, R.-A. (2020). Coconut shell derived activated biochar–manganese dioxide nanocomposites for high performance capacitive deionization. Desalination, 492, 114602. https://doi.org/10.1016/j.desal.2020.114602
Ahmed, M. A., & Tewari, S. (2018). Capacitive deionization: Processes, materials and state of the technology. Journal of Electroanalytical Chemistry, 813, 178-192.
https://doi.org/10.1016/j.jelechem.2018.02.024
Aliyu, U. M., Rathilal, S., & Isa, Y. M. (2018). Membrane desalination technologies in water treatment: A review. Water Practice & Technology, 13(4), 738-752.
https://doi.org/10.2166/wpt.2018.084
AL-Rajabi, M. M., Abumadi, F. A., Laoui, T., Atieh, M. A., & Khalil, K. A. (2024). Capacitive deionization for water desalination: Cost analysis, recent advances, and process optimization. Journal of Water Process Engineering, 58, 104816.
https://doi.org/10.1016/j.jwpe.2024.104816
Alvarado, L., & Chen, A. (2014). Electrodeionization: Principles, Strategies and Applications. Electrochimica Acta, 132, 583-597.
https://doi.org/10.1016/j.electacta.2014.03.165
Bao, S., Xin, C., Zhang, Y., Chen, B., Ding, W., & Luo, Y. (2023). Application of capacitive deionization in water treatment and energy recovery: a review. Energies, 16(3), 1136.
https://doi.org/10.3390/en16031136
Biesheuvel, P.M. and van der Wal, A. (2010) Membrane Capacitive Deionization. Journal of Membrane Science, 346, 256-262.
http://dx.doi.org/10.1016/j.memsci.2009.09.043
Cheng, Y., Hao, Z., Hao, C., Deng, Y., Li, X., Li, K., & Zhao, Y. (2019). A review of modification of carbon electrode material in capacitive deionization. RSC Adv, 9(42), 24401-24419. https://doi.org/10.1039/c9ra04426d
Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17, 145-155.
https://doi.org/10.1007/s10311-018-0785-9ï
Fang, K., Peng, F., San, E., & Wang, K. (2021). The impact of concentration in electrolyte on ammonia removal in flow-electrode capacitive deionization system. Separation and Purification Technology, 255, 117337. https://doi.org/10.1016/j.seppur.2020.117337
Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. J Environ Manage, 92(3), 407-418.
https://doi.org/10.1016/j.jenvman.2010.11.011
Ghaffour, N., Bundschuh, J., Mahmoudi, H., & Goosen, M. F. A. (2015). Renewable energy-driven desalination technologies: A comprehensive review on challenges and potential applications of integrated systems. Desalination, 356, 94–114.
https://doi.org/10.1016/j.desal.2014.10.024
Gong, A., Zhao, Y., Liang, B., & Li, K. (2022). Stepwise hollow Prussian blue/carbon nanotubes composite as a novel electrode material for high-performance desalination. Journal of Colloid and Interface Science, 605, 432-440.
https://doi.org/10.1016/j.jcis.2021.07.103
Hand, S., Guest, J. S., & Cusick, R. D. (2019). Technoeconomic analysis of brackish water capacitive deionization: Navigating tradeoffs between performance, lifetime, and material costs. Environmental Science & Technology, 53(22), 13353–13363. https://doi.org/10.1021/acs.est.9b04347
Hong, S. P., Yoon, H., Lee, J., Kim, C., Kim, S., Lee, J., Lee, C., & Yoon, J. (2020). Selective phosphate removal using layered double hydroxide/reduced graphene oxide (LDH/rGO) composite electrode in capacitive deionization. J Colloid Interface Sci., 564, 1-7.
https://doi.org/10.1016/j.jcis.2019.12.068
Hu, X., Min, X., Li, X., Si, M., Liu, L., Zheng, J., Yang, W., & Zhao, F. (2022). Co-Co3O4 encapsulated in nitrogen-doped carbon nanotubes for capacitive desalination: Effects of nano-confinement and cobalt speciation. Journal of Colloid and Interface Science, 616, 389-400.
https://doi.org/10.1016/j.jcis.2022.02.098
Janpoor, F., Torabian, A., Panahi, H. A., & Baghdadi, M. (2021). Capacitive deionization and disinfection of water using graphene oxide-dendrimer-silver coated electrodes. Desalination and Water Treatment, 216, 129–139. https://doi.org/10.5004/dwt.2021.26754
Laxman, K., Sathe, P., Al Abri, M., Dobretsov, S., & Dutta, J. (2020). Disinfection of Bacteria in Water by Capacitive Deionization. Front Chem, 8, 774.
https://doi.org/10.3389/fchem.2020.00774
Leong, Z. Y., Zhang, J., Vafakhah, S., Ding, M., Guo, L., & Yang, H. Y. (2021). Electrochemically activated layered manganese oxide for selective removal of calcium and magnesium ions in hybrid capacitive deionization. Desalination, 520, 115374.
https://doi.org/10.1016/j.desal.2021.115374
Li, D., Ning, X. A., Yuan, Y., Hong, Y., & Zhang, J. (2020). Ion-exchange polymers modified bacterial cellulose electrodes for the selective removal of nitrite ions from tail water of dyeing wastewater. Journal of Environmental Sciences, 91, 62–72.
https://doi.org/10.1016/j.jes.2020.01.002
Li, H., & Zou, L. (2011). Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination. Desalination, 275(1-3), 62-66.
https://doi.org/10.1016/j.desal.2011.02.027
Li, L., Su, F., Zhang, W. et al. (2018). Digital Transformation by SME Entrepreneurs: A Capability Perspective. Information Systems Journal, 28, 1129-1157.
https://doi.org/10.1111/isj.12153
Li, P., Gui, Y., & Blackwood, D. J. (2018). Development of a Nanostructured α-MnO2/Carbon Paper Composite for Removal of Ni2+/Mn2+ Ions by Electrosorption. ACS Appl Mater Interfaces, 10(23), 19615-19625.
https://doi.org/10.1021/acsami.8b02471
Liu, L., Guo, X., Tallon, R., Huang, X., & Chen, J. (2017). Highly porous N-doped graphene nanosheets for rapid removal of heavy metals from water by capacitive deionization. Chem Commun (Camb), 53(5), 881-884.
https://doi.org/10.1039/c6cc08515f
Liu, X., Liu, L., Zhang, J., & Meng, Q. (2021). Capacitive deionization and methyl orange removal of holey graphene hydrogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 618, 126463.
https://doi.org/10.1016/j.colsurfa.2021.126463
Luo, H., Agata, W.-A. S., & Geise, G. M. (2020). Connecting the Ion Separation Factor to the Sorption and Diffusion Selectivity of Ion Exchange Membranes. Industrial & Engineering Chemistry Research, 59(32), 14189-14206.
https://doi.org/10.1021/acs.iecr.0c02457
Ma, J., Liang, P., Sun, X., Zhang, H., Bian, Y., Yang, F., Bai, J., Gong, Q., & Huang, X. (2019). Energy recovery from the flow-electrode capacitive deionization. Journal of Power Sources, 421, 50-55.
https://doi.org/10.1016/j.jpowsour.2019.02.082
Mansoor, N. E., Diaz, L. A., Shuck, C. E., Gogotsi, Y., Lister, T. E., & Estrada, D. (2022). Removal and recovery of ammonia from simulated wastewater using Ti3C2T x MXene in flow electrode capacitive deionization. NPJ Clean Water, 5(1), 26. https://doi.org/10.1038/s41545-022-00164-3
Mubita, T. M., Dykstra, J. E., Biesheuvel, P. M., van der Wal, A., & Porada, S. (2019). Selective adsorption of nitrate over chloride in microporous carbons. Water Res, 164, 114885.
https://doi.org/10.1016/j.watres.2019.114885
Nai, J., & Lou, X. W. D. (2019). Hollow Structures Based on Prussian Blue and Its Analogs for Electrochemical Energy Storage and Conversion. Adv Mater, 31(38), e1706825.
https://doi.org/10.1002/adma.201706825
Pastushok, O., Zhao, F., Ramasamy, D. L., & Sillanpää, M. (2019). Nitrate removal and recovery by capacitive deionization (CDI). Chemical Engineering Journal, 375, 121943.
https://doi.org/10.1016/j.cej.2019.121943
Porada, S., Zhao, R., van der Wal, A., Presser, V., & Biesheuvel, P. M. (2013).Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58(8), 1388–1442.
https://doi.org/10.1016/j.pmatsci.2013.03.005
Qasem, N. A. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. NPJ Clean Water, 4(1).
https://doi.org/10.1038/s41545-021-00127-0
Ryoo, M. W., Kim, J. H., & Seo, G. (2003). Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution. J Colloid Interface Sci, 264(2), 414-419.
https://doi.org/10.1016/S0021-9797(03)00375-8
Shi, W., Ye, C., Xu, X., Liu, X., Ding, M., Liu, W., Cao, X., Shen, J., Yang, H. Y., & Gao, C. (2018). High-Performance Membrane Capacitive Deionization Based on Metal-Organic Framework-Derived Hierarchical Carbon Structures. ACS omega, 3(8), 8506-8513. https://doi.org/10.1021/acsomega.8b01356
Shim, J., Yoon, N., Park, S., Park, J., Son, M., Jeong, K., & Cho, K. H. (2021). Influence of natural organic matter on membrane capacitive deionization performance. Chemosphere, 264(Pt 2), 128519.
https://doi.org/10.1016/j.chemosphere.2020.128519
Singh, K., Agarwal, M., & Renu. (2017). Heavy metal removal from wastewater using various adsorbents: a review. Journal of Water Reuse and Desalination, 7(4), 387-419. https://doi.org/10.2166/wrd.2016.104
Su, Y., Muller, K. R., Yoshihara-Saint, H., Najm, I., & Jassby, D. (2021). Nitrate Removal in an Electrically Charged Granular-Activated Carbon Column. Environ Sci Technol, 55(24), 16597-16606. https://doi.org/10.1021/acs.est.1c02152
Tang, W., He, D., Zhang, C., Kovalsky, P., & Waite, T. D. (2017). Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. Water Res, 120, 229-237. https://doi.org/10.1016/j.watres.2017.05.009
Tang, W., Liang, J., He, D., Gong, J., Tang, L., Liu, Z., Wang, D., & Zeng, G. (2019). Various cell architectures of capacitive deionization: Recent advances and future trends. Water Research, 150, 225-251. https://doi.org/10.1016/j.watres.2018.11.064
(2023). The United Nations World Water Development Report 2023: Partnerships and cooperation for water. UNESCO Publishing.
https://www.unwater.org/publications/un-world-water-development-report-2023
Wang, J., Wang, G., Wu, T., Wang, D., Yuan, Y., Wang, J., Liu, T., Wang, L., & Qiu, J. (2018). Quaternary Ammonium Compound Functionalized Activated Carbon Electrode for Capacitive Deionization Disinfection. ACS Sustainable Chemistry & Engineering, 6(12), 17204-17210.
https://doi.org/10.1021/acssuschemeng.8b04573
Wang, S., Li, X., Zhao, H., Quan, X., Chen, S., & Yu, H. (2018). Enhanced adsorption of ionizable antibiotics on activated carbon fiber under electrochemical assistance in continuous-flow modes. Water Res, 134, 162-169. https://doi.org/10.1016/j.watres.2018.01.068
Xing, W., Liang, J., Tang, W., He, D., Yan, M., Wang, X., Luo, Y., Tang, N., & Huang, M. (2020). Versatile applications of capacitive deionization (CDI)-based technologies. Desalination, 482.
https://doi.org/10.1016/j.desal.2020.114390
Yang, L., Hu, W., Chang, Z., Liu, T., Fang, D., Shao, P., Shi, H., & Luo, X. (2021). Electrochemical recovery and high value-added reutilization of heavy metal ions from wastewater: Recent advances and future trends. Environment International, 152, 106512.
https://doi.org/10.1016/j.envint.2021.106512
Yu, F., Yang, Z., Cheng, Y., Xing, S., Wang, Y., & Ma, J. (2022). A comprehensive review on flow-electrode capacitive deionization: Design, active material and environmental application. Separation and Purification Technology, 281, 119870. https://doi.org/10.1016/j.seppur.2021.119870
Zhang, C., Dong, P., Wang, C., Liu, Y., Li, K., & Feng, G. (2024). Cr3+-doped α-MnO2 electrode with high specific capacitance and ultra-long cycle life. Electrochimica Acta, 481, 143946.
https://doi.org/10.1016/j.electacta.2024.143946
Zhang, C., He, D., Ma, J., Tang, W., & Waite, T. D. (2018). Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review. Water Res, 128, 314-330.
https://doi.org/10.1016/j.watres.2017.10.024
Zhang, G., Li, W., Chen, Z., Long, J., & Xu, C. (2022). Freestanding N-doped graphene membrane electrode with interconnected porous architecture for efficient capacitive deionization. Carbon, 187, 86-96.
https://doi.org/10.1016/j.carbon.2021.10.081
Zhang, G., Li, W., Chen, Z., Long, J., & Xu, C. (2022). Freestanding N-doped graphene membrane electrode with interconnected porous architecture for efficient capacitive deionization. Carbon, 187, 86–96.
https://doi.org/10.1016/j.carbon.2021.10.081
Zhang, H., Wang, Q., Li, L., Huang, R., Gu, H., Chen, H., Wu, Z., & Wang, Z. (2024). Electric double layer capacitive adsorption and faradaic pseudo-capacitance behavior of ZnFe-PANI/CNT electrode for phosphate removal in capacitive deionization. Separation and Purification Technology, 333, 125913.
https://doi.org/10.1016/j.seppur.2023.125913
Zhang, H., Wang, Q., Li, L., Huang, R., Gu, H., Chen, H., Wu, Z., & Wang, Z. (2024). Electric double layer capacitive adsorption and faradaic pseudo-capacitance behavior of ZnFe-PANI/CNT electrode for phosphate removal in capacitive deionization. Separation and Purification Technology, 333, 125913. https://doi.org/10.1016/j.seppur.2023.125913
Zhao, W.-Y., Zhou, M., Yan, B., Sun, X., Liu, Y., Wang, Y., Xu, T., & Zhang, Y. (2018). Waste Conversion and Resource Recovery from Wastewater by Ion Exchange Membranes: State-of-the-Art and Perspective. Industrial & Engineering Chemistry Research, 57(18), 6025-6039. https://doi.org/10.1021/acs.iecr.8b00519
Zhou, F., Gao, T., Luo, M., & Li, H. (2018). Preferential electrosorption of anions by C/Na0.7MnO2 asymmetrical electrodes. Separation and Purification Technology, 191, 322-327.
https://doi.org/10.1016/j.seppur.2017.09.058