Lâm Quốc Anh , Võ Thị Mộng Thuý * Đặng Thị Mỹ Vân

* Tác giả liên hệ (vtmthuy@tdu.edu.vn)

Abstract

In the paper, optimality conditions are established for various types of efficient solutions associated with an arbitrary set and its recession cone in the vector optimization problem. First, the separation theorems for convex sets, the concepts of improvement sets, and the recession cone of an arbitrary set are recalled, and some of their new properties are also investigated. Then, the model of the vector optimization problem is examined, along with its Pareto efficient solutions corresponding to an arbitrary set and Benson efficient solutions corresponding to the recession cone. Finally, by employing the linear scalarization method, necessary and sufficient optimality conditions for these efficient solutions are derived.

Keywords: Vector optimization problem, efficient solution, Benson efficient solution, optimality condition, improvement set, recession cone, scalarization method

Tóm tắt

Trong bài báo, việc thiết lập các điều kiện tối ưu cho các dạng nghiệm hữu hiệu liên quan đến tập hợp bất kỳ và nón lùi xa của nó cho bài toán tối ưu vector đã được thực hiện. Đầu tiên, các định lý tách cho tập lồi, các khái niệm về tập cải tiến và nón lùi xa của một tập bất kỳ được nhắc lại, đồng thời một số tính chất mới của chúng cũng được khảo sát. Sau đó, mô hình bài toán tối ưu vector cùng với nghiệm hữu hiệu Pareto tương ứng với tập hợp bất kỳ và nghiệm hữu hiệu Benson tương ứng với nón lùi xa của bài toán tối ưu vector được xem xét. Cuối cùng, bằng cách sử dụng phương pháp vô hướng hóa tuyến tính, các điều kiện cần và đủ tối ưu cho các nghiệm hữu hiệu này được thiết lập.

Từ khóa: Bài toán tối ưu vector, nghiệm hữu hiệu, nghiệm hữu hiệu Benson, điều kiện tối ưu, tập cải tiến, nón lùi xa, phương pháp vô hướng hóa

Article Details

Tài liệu tham khảo

Andreani, R., Haeser, G., & Martínez, J. M. (2011). On sequential optimality conditions for smooth constrained optimization. Optimization, 60(5), 627-641.
https://doi.org/10.1080/02331930903578700

Anh, L. Q., Danh, N. H., Duoc, P. T., & Tam, T. N. (2021). Qualitative properties of solutions to set optimization problems. Computational and Applied Mathematics, 40(2), 1-18.
https://doi.org/10.1007/s40314-021-01458-x

Anh, L. Q., Anh, N. T., Duoc, P. T, Khanh, L. T. V., & Thu, P. T. A. (2022). The connectedness of weakly and strongly efficient solution sets of nonconvex vector equilibrium problems. Applied Set-Valued Analysis Optimization, 4, 109-127.
https://doi.org/10.23952/asvao.4.2022.1.08

Anh, L. Q., Duoc, P. T., & Thuy, V. T. M. (2023). Existence and stability to vector optimization problems via improvement sets. Journal of Applied and Numerical Optimization, 5(2), 219–235.
https://doi.org/10.23952/jano.5.2023.2.03

Anh, L. Q., Thuy, V. T. M., & Zhao, X. (2025). Qualitative properties of robust Benson efficient solutions of uncertain vector optimization problems. Journal of Optimization Theory and Applications, 205(1), 1-37.
https://doi.org/10.1007/s10957-025-02638-z

Benson, H. P. (1979). An improved definition of proper efficiency for vector maximization with respect to cones. Journal of Mathematical Analysis and Applications, 71(1), 232-241.
https://doi.org/10.1016/0022-247X(79)90226-9

Borwein, J. (1977). Proper efficient points for maximizations with respect to cones. SIAM Journal on Control and Optimization, 15(1), 57-63.
https://doi.org/10.1137/0315004

Dempe, S., Dutta, J., & Mordukhovich, B. S. (2007). New necessary optimality conditions in optimistic bilevel programming. Optimization, 56(5-6), 577-604.
https://doi.org/10.1080/02331930701617551

Edgeworth, F. Y. (1881). Mathematical Psychics: An Essay on the Application of Mathematics to the Moral Sciences. C. Kegan Paul & Co., London.

Ehrgott, M. (2005). Multicriteria Optimization, Vol. 491. Springer, Berlin.
https://doi.org/10.1007/3-540-27659-9

Eichfelder, G., & Jahn, J. (2011). Vector Optimization Problems and Their Solution Concepts. In: Ansari, Q., & Yao, J. C. (eds) Recent Developments in Vector Optimization (pp. 1-27). Springer, Berlin.
https://doi.org/10.1007/978-3-642-21114-0_1

Fan, K. (1972). A minimax inequality and applications. Inequalities, 3, 103-113.

Geoffrion, A. M. (1968). Proper efficiency and the theory of vector maximization. Journal of Mathematical Analysis and Applications, 22(3), 618-630.
https://doi.org/10.1016/0022-247X(68)90201-1

Gutiérrez, C., Jiménez, B., & Novo, V. (2012). Improvement sets and vector optimization, European Journal of Operational Research, 223(2), 304-311.
https://doi.org/10.1016/j.ejor.2012.05.050

Gutiérrez, C., López, R., & Novo, V. (2014). Existence and boundedness of solutions in infinite-dimensional vector optimization problems. Journal of Optimization Theory and Applications, 162, 515-547.
https://doi.org/10.1007/s10957-014-0541-7

Han, Y. (2023). Density and connectedness of optimal points with respect to improvement sets. Optimization, 72(4), 979-1008.
https://doi.org/10.1080/02331934.2021.2009825

Han, Y., & Zhao, K. Q. (2023). Stability of optimal points with respect to improvement sets. Journal of Optimization Theory and Applications, 199(3), 904-930.
https://doi.org/10.1007/s10957-023-02308-y

Henig, M. I. (1982). Proper efficiency with respect to cones. Journal of Optimization Theory and Applications, 36(3), 387-407. https://doi.org/10.1007/BF00934353

Hirschberger, M. (2005). Connectedness of efficient points in convex and convex
transformable vector optimization. Optimization, 54(3), 283-304.
https://doi.org/10.1080/02331930500096 270

Jahn, J. (2011). Vector Optimization. Springer, Berlin.
https://doi.org/10.1007/978-3-642-17005-8

Khan, A. A., Tammer, C., & Zălinescu, C. (2015). Set-Valued Optimization. Springer, Berlin.
https://doi.org/10.1007/978-3-642-54265-7

Kim, D. S., Mordukhovich, B. S., Phạm, T. S., & Tuyen, N. V. (2021). Existence of efficient and properly efficient solutions to problems of constrained vector optimization. Mathematical Programming, 190(1), 259-283.
https://doi.org/10.1007/s10107-020-01532-y

Kapoor, S., Lalitha, C. S. (2022). Continuity and closedness of constraint and solution set mappings in unified parametric semi-infinite vector optimization. Journal of Mathematical Analysis and Applications, 506(2), 125648.
https://doi.org/10.1016/j.jmaa.2021.125648

Luc, D. T. (1989). Theory of Vector Optimization. Springer, Berlin.
https://doi.org/10.1007/978-3-642-50280-4

Lucchetti, R. E., & Miglierina, E. (2004). Stability for convex vector optimization problems. Optimization, 53(5-6), 517-528.
https://doi.org/10.1080/02331930412331327166

Maeda, T. (2012). On optimization problems with set-valued objective maps: existence and optimality. Journal of Optimization Theory and Applications, 153, 263-279.
https://doi.org/10.1007/s10957-011-9952-x

Maggioni, F., & Wallace, S. W. (2012). Analyzing the quality of the expected value solution in stochastic programming. Annals of Operations Research, 200, 37-54.
https://doi.org/10.1007/s10479-010-0807-x

Mordukhovich, B. S. (2006). Variational Analysis and Generalized Differentiation II:Applications. Springer, Berlin.
https://doi.org/10.1007/3-540-31246-3

Muu, L., & Oettli, W. (1992). Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Analysis: Theory, Methods & Applications, 18(12), 1159-1166.
https://doi.org/10.1016/0362-546X(92)90159-C

Pareto, V. (1906). L'ofelimità nei cicli non chiusi. Giornale degli Economisti, 33, 15-30.

Peng, Z. Y., Peng, J. W., Long, X. J., & Yao, J. C. (2018). On the stability of solutions for
semiinfinite vector optimization problems. Journal of Global Optimization, 70(1), 55-69.
https://doi.org/10.1007/s10898-017-0553-6

Peng, Z. Y., Chen, X. J., Zhao, Y. B., & Li, X. B. (2023). Painlevé-Kuratowski convergence of minimal solutions for set-valued optimization problems via improvement sets. Journal of Global Optimization, 87(2), 759-781.
https://doi.org/10.1007/s10898-022-01166-8

Peng, Z. Y., Shao, C. Y., Zeng, Y., & Xiao, Y. B. (2024). Painlevé–Kuratowski stability of approximate solution sets for perturbed set optimization problems under general ordering sets by recession cone. Taiwanese Journal of Mathematics, 28(3), 611-636.
https://doi.org/10.11650/tjm/240104

Tanaka, T., & Kuroiwa, D. (1993). The convexity of A and B assures intA+B= int(A+ B). Applied Mathematics Letters, 6(1), 83-86.
https://doi.org/10.1016/0893-9659(93)90154-F

Tanino, T. (1988). Stability and sensitivity analysis in convex vector optimization. SIAM Journal on Control and Optimization, 26(3), 521-536.
https://doi.org/10.1137/0326031

Ustun, D., Carbas, S., & Toktas, A. (2021). Multi-objective optimization of engineering design problems through Pareto-Based bat algorithm. In: Dey, N., & Rajinikanth, V. (eds) Applications of Bat Algorithm and its Variants. Springer, Singapore.
https://doi.org/10.1007/978-981-15-5097-3_2

Wang, Q., Jin, J., & Zhai, Y. (2024). Higher-order optimality conditions of robust Benson proper efficient solutions in uncertain vector optimization problems. Optimization Letters, 18(6), 1475-1490.
https://doi.org/10.1007/s11590-023-02061-1

Wei, H. Z., Chen, C.R., & Li, S. J. (2018). Characterizations for optimality conditions of general robust optimization problems. Journal of Optimization Theory and Applications, 177, 835-856.
https://doi.org/10.1007/s10957-018-1256-y

Zhao, K., Chen, G., & Yang, X. (2014). Approximate proper efficiency in vector optimization. Optimization, 64(8), 1777-1793. https://doi.org/10.1080/02331934.2014.979818

Zhou, Z., Chen, W., & Yang, X. (2019). Scalarizations and optimality of constrained set-valued optimization using improvement sets and image space analysis. Journal of Optimization Theory and Applications, 183, 944-962.
https://doi.org/10.1007/s10957-019-01554-3

Zhou, Z. A., & Kuang, M. (2023). Scalarization and optimality conditions of E-globally proper efficient solution for set-valued equilibrium problems. Asia Pacific Journal of Operational Research, 40(02), 2250009.
https://doi.org/10.1142/S0217595922500099

Zhou, Z., Liang, K., & Ansari, Q. H. (2025). Optimality conditions for Benson proper efficiency of set-valued equilibrium problems. Mathematical Methods of Operations Research, 101, 111–134.
https://doi.org/10.1007/s00186-025-00887-2