Đánh giá tính dễ bị tổn thương dưới tác động của xâm nhập mặn trên các mô hình canh tác nông nghiệp tại tỉnh Sóc Trăng năm 2023
Abstract
The study was conducted to assess the vulnerability of agricultural production systems to saltwater intrusion in Soc Trang. Sentinel-1A satellite imagery was integrated with the Random Forest algorithm to classify land use. A survey of 100 farming households was conducted to evaluate vulnerability levels based on the IPCC framework. The classification results identified 10 agricultural land-use types. The vulnerability assessment indicated that double-cropped rice, triple-cropped rice, and annual crops are highly vulnerable. In contrast, the rice-shrimp system and perennial crops exhibit moderate and low vulnerability, respectively, due to their higher adaptive capacity for saline conditions. The findings provide essential scientific insights into the vulnerability of different farming systems to saltwater intrusion, serving as a foundation for developing targeted adaptation strategies and zoning measures to mitigate impacts at the local level.
Tóm tắt
Nghiên cứu được thực hiện nhằm đánh giá tính dễ bị tổn thương do xâm nhập mặn trên các mô hình canh tác nông nghiệp tại tỉnh Sóc Trăng. Dữ liệu vệ tinh Sentinel-1A được sử dụng kết hợp với thuật toán Random Forest để phân loại hiện trạng sử dụng đất nông nghiệp. Trên cơ sở đó, 100 nông hộ được tiến hành khảo sát nhằm đánh giá mức độ tổn thương theo khung lý thuyết của IPCC. Nghiên cứu đã xác định được 10 loại hình sử dụng đất nông nghiệp tại Sóc Trăng. Kết quả đánh giá tính dễ bị tổn thương cho thấy các mô hình lúa hai vụ, lúa ba vụ và cây hàng năm có mức tổn thương cao. Trong khi đó, mô hình lúa - tôm và cây lâu năm có mức tổn thương trung bình và thấp. Kết quả nghiên cứu cung cấp thông tin khoa học về tính dễ bị tổn thương của các mô hình canh tác trước xâm nhập mặn, làm cơ sở cho việc đề xuất các biện pháp thích ứng phù hợp tại địa phương.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Abdel-Rahman, E. M., Mutanga, O., Adam, E., & Ismail, R. (2013). Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers. ISPRS Journal of Photogrammetry and Remotev Sensing, 88, 48–59.
https://doi.org/10.1016/j.isprsjprs.2013.11.013
Anderson, J. R., Hardy, E. E., Roach, J. T., & Witmer, R. E. (1976). A land use and land cover classification system for use with remote sensor data. USGS Professional Paper.
https://doi.org/10.3133/pp964
Benhammou, Y., Alcaraz-Segura, D., Guirado, E., Khaldi, R., Achchab, B., Herrera, F., & Tabik, S. (2022). Sentinel2GlobalLULC: A Sentinel-2 RGB image tile dataset for global land use/cover mapping with deep learning. Sci. Data 2022, 9, 20.
https://doi.org/10.1038/s41597-022-01775-8
Bui, Q. D., Luu, C., Ha, H., & Nguyen, V. (2024). A holistic approach to salinity intrusion vulnerability assessment using geospatial technologies: an application for Mekong Delta of Vietnam. International Journal of Disaster Risk Reduction, 113, 104854.
https://doi.org/10.1016/j.ijdrr.2024.104854
Cochran, W. G. (1977). Sampling Techniques. 3rd Edition, John Wiley & Sons, New York.
Congalton, R. G., & Green, K. (1999). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Lewis Publishers, Boca Raton. https://doi.org/10.1201/9781420048568
Dahhani, S., Raji, M., Hakdaoui, M., & Lhissou, R. (2022). Land cover mapping using Sentinel-1 Time-Series data and Machine-Learning classifiers in agricultural Sub-Saharan landscape. Remote Sensing, 15(1), 65. https://doi.org/10.3390/rs15010065
Datcu, M., Schwarz, G., & Dumitru, C. O. (2020). Deep Learning Training and Benchmarks for Earth Observation Images: Data Sets, Features, and Procedures. In Recent Trends in Artificial Neural Networks. From Training to Prediction, Sadollah, A., Ed., InTech Open: London, UK. https://doi.org/10.5772/intechopen.90910
Department of Water Resources Management. (2010). Mekong Delta provinces: Struggling with over extraction of groundwater (in Vietnamese). http://dwrm.gov.vn/index.php?language=vi&nv=news&op=Hoat-dong-cua-dia-phuong/Cac-tinh-DBSCL-Hut-hoi-hut-nuoc-ngam-1155
Duan, Y. (2016). Saltwater Intrusion and Agriculture: A Comparative Study Between the Netherlands and China. TRITALWR Degree Project 2016:20.
https://www.diva-portal.org/smash/get/diva2:1060822/FULLTEXT01.pdf
Gallopin, G. C. (2006). Linkages between Vulnerability, Resilience, and Adaptive Capacity. Global Environmental Change, 16(3), 293-303. https://doi.org/10.1016/j.gloenvcha.2006.02.004
Gatdula, N., & Blanco, A. (2024). Assessment of the vulnerability of coastal agriculture to seawater intrusion using remote sensing, GIS, and Multi-Criteria Decision Analysis. International Journal of Digital Earth, 17(1).
https://doi.org/10.1080/17538947.2024.2367733
General Statistics Office of Vietnam (GSO). (2016). Statistical Yearbook of Viet Nam (in Vietnamese).
https://www.gso.gov.vn/en/data-and-statistics/2019/10/statistical-yearbook-of-vietnam-2016/
General Statistics Office of Vietnam (GSO). (2021). Statistical Yearbook of Viet Nam (in Vietnamese).
https://www.gso.gov.vn/en/data-and-statistics/2022/08/statistical-yearbook-of-vietnam-2021/
Google Earth Engine. (2024). Sentinel-1 algorithms. https://developers.google.com/earth-engine/guides/sentinel1.
Hahn, M. B., Riederer, A. M., & Foster, S. O. (2009). The Livelihood Vulnerability Index: A pragmatic approach to assessing risks from climate variability and change—A case study in Mozambique. Global Environmental Change, 19(1), 74–88.
https://doi.org/10.1016/j.gloenvcha.2008.11.002
Hoeser, T., & Kuenzer, C. (2020). Object Detection and Image Segmentation with Deep Learning on Earth Observation Data: A Review-Part I: Evolution and Recent Trends. Remote Sensing, 12(10), 1667.
https://doi.org/10.3390/rs12101667
IPCC. (2001). Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Third Assessment Report. Cambridge University Press, Cambridge, UK.
IPCC. (2007). Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
IPCC. (2014). Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects, Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press.
Islami, F. A., Tarigan, S. D., Wahjunie, E. D., & Dasanto, B. D. (2022). Accuracy assessment of land use change analysis using Google Earth in Sadar Watershed Mojokerto Regency. IOP Conference Series Earth and Environmental Science, 950(1), 012091.
https://doi.org/10.1088/1755-1315/950/1/012091
Ivkovic, K., S. Marshall, L. Morgan, A. Werner, H. Carey, S. Cook, B. Sundaram, et al. (2012). National-scale Vulnerability Assessment of Seawater Intrusion: Summary Report.
https://core.ac.uk/download/pdf/30677605.pdf
Jin, Y., Liu, X., Chen, Y., & Liang, X. (2018). Land-cover mapping using Random Forest classification and incorporating NDVI time-series and texture: a case study of central Shandong. International Journal of Remote Sensing, 39(23), 8703–8723.
https://doi.org/10.1080/01431161.2018.1490976
Koh, J. (2011). Local Vulnerability Assessment of Climate Change and its Implications: The Case of Gyeonggi-Do, Korea. Resilient Cities 1: 411–427.
https://doi.org/10.1007/978-94-007-0785-6_42.
Le, K. V., & Nguyen, C. H. (2011). Physical characteristics of soil in rainfed rice cultivation areas in Long Phu district, Soc Trang province. Can Tho University Journal of Science, 2011(18b), 284-294 (in Vietnamese).
Le, T. N. (2017). A review of research on climate change vulnerability assessment. Journal of Science and Technology Development, 20(1), 5-20 (in Vietnamese).
https://vjol.info.vn/index.php/JSTD/article/view/33037/28117
Lee, C. E., Downey, K., Colby, R. S., Freire, C. A., Nichols, S., Burgess, M. N., & Judy, K. J. (2022). Recognizing Salinity Threats in the Climate Crisis. Integrative and Comparative Biology, 62(2), 441–460.
https://doi.org/10.1093/icb/icac069
Luers, A. L. (2005). The Surface of Vulnerability: An Analytical Framework for Examining Environmental Change. Global Environmental Change, 15(3), 214-223.
https://doi.org/10.1016/j.gloenvcha.2005.04.003
MARD. (2020). Mekong Delta takes measures to reduce saltwater intrusion (in Vietnamese).
https ://www.mard.gov.vn/en/Pages/mekong-delta-takes-measures-to-reduce-saltwaterintrusion.aspx?item=16.
McMichael, A. J. (2013). Globalization, climate change, and human health. New England Journal of Medicine, 368(14), 1335–1343.
https://doi.org/10.1056/nejmra1109341
Ministry of Agriculture and Rural Development. (2010). The harms outweigh the benefits as farmers rush to cultivate a third rice crop in Soc Trang (in Vietnamese). https://www.mard.gov.vn/Pages/loi-bat-cap-hai-vi-dua-nhau-lam-lua-vu-3-o-soc-trang-2131.aspx
Ministry of Natural Resources and Environment of Viet Nam (MONRE). (2020). Climate Change Scenarios (in Vietnamese). http://vnmha.gov.vn/upload/files/kich-ban-bien-doi-khi-hau-phien-ban-cap-nhat-nam-2020.pdf
Nguyen, B. V., Van, T. P. D., Tran, H. T. T., & Nguyen, A. T. (2017a). Impact of saltwater intrusion on water resource management in agricultural production in Long Phu district, Soc Trang province. Can Tho University Journal of Science, 52(2017), 104-112 (in Vietnamese). https://doi.org/10.22144/ctu.jvn.2017.116
Nguyen, D. T. H., & Nguyen, N. T. (2023). Monitoring the rice cropping pattern in Soc Trang province from 2016 to 2022 using SENTINEL-1 imagery. Land Management Conference 2023 (in Vietnamese).
Nguyen, D. T. H., Huynh, N. T., & Nguyen, N. T. (2024a). Assessment of agricultural risks under the impact of salinity intrusion in Tra Vinh Province. Journal of Soil Science, 75, 133 - 137 (in Vietnamese).
Nguyen, D. T. H., Nguyen, C. T., Phan, D. K., & Tran, M. L. (2019). Spatial analysis of land use patterns under the impact of saltwater intrusion in Soc Trang province. Can Tho University Journal of Science, 55(Environment), 1 (in Vietnamese). https://doi.org/10.22144/ctu.jsi.2019.125
Nguyen, D. T. H., Nguyen, N. M., Cao, P. N., Duong, H. C., Nguyen, N. T., & Phan, D. K. (2023). Analysis of agricultural land vulnerability to saltwater intrusion in Tien Giang province in 2020 using remote sensing. Can Tho University Journal of Science, 59(Environment and Climate Change), 185–192 (in Vietnamese). https://doi.org/10.22144/ctu.jvn.2023.120
Nguyen, S. H., Dao, C. D., Pham, V. K., & Phan, H. A. (2024b). Assessing vulnerability to climate change in agricultural production in Huong Hoa district, Quang Tri province. Journal of Hydro-meteorology, 5(761), 1–12 (in Vietnamese). https://doi.org/10.36335/vnjhm.2024(761).1-12
Nguyen, T. N. N., Truong, T. V., Nguyen, T. V., & Nguyen, L. T. (2017b). Status and vulnerability to salinization in the context of climate change in Da Nang City. VNU Journal of Science: Earth and Environmental Sciences, 33(2), 90-107 (in Vietnamese).
https://doi.org/10.25073/2588-1094/vnuees.4105
Nguyen, T. T. X., & Woodroffe, C. D. (2015). Assessing relative vulnerability to sea-level rise in the western part of the Mekong River Delta in Vietnam. Sustainability Science, 11(4), 645–659.
https://doi.org/10.1007/s11625-015-0336-2
Nguyen, T. V. (2022). Salinity intrusion in the Vietnamese Mekong Delta, a threat: possible causes, effects on people’s life and production, and temporary solutions and adaptable strategies. In Environmental science and engineering (pp. 1–10).
https://doi.org/10.1007/978-3-031-07500-1_1
Nguyen, Y. T. B., & Duong, H. T. (2018). Assessing climate change vulnerability using the Livelihood Vulnerability Index: A case study of the Thai and H’mong ethnic groups in Chieng Dong commune, Yen Chau district, Son La province. Journal of Agriculture and Rural Development, 12(2018), 129-137 (in Vietnamese).
Oswald, S. M., Hollosi, B., Žuvela-Aloise, M., See, L., Guggenberger, S., Hafner, W., Prokop, G., Storch, A., & Schieder, W. (2020). Using urban climate modelling and improved land use classifications to support climate change adaptation in urban environments: A case study for the city of Klagenfurt, Austria. Urban Climate, 31(2020), 100582. https://doi.org/10.1016/j.uclim.2020.100582
People’s Committee of Soc Trang Province. (2021). Soc Trang Province Master Plan for the Period 2021 - 2030, with a Vision to 2050 (in Vietnamese).
People's Council of Soc Trang Province. (2018). Natural conditions of Soc Trang Province (in Vietnamese).
https://dbnd.soctrang.gov.vn/Default.aspx?sname=hdnd&sid=1290&pageid=32103&catid=54684&id=266991&catname=%u0110i%u1ec1u+ki%u1ec7n+t%u1ef1+nhi%u00ean+S%u00f3c+Tr%u0103ng
Pham, H. V., Nguyen, G. V., Nguyen, B. A., Le, H. V. H., Pham, T. D., Hasanlou, M., & Bui, D. T. (2019). Soil salinity mapping using SAR Sentinel-1 data and advanced machine learning algorithms: a case study at Ben Tre province of the Mekong River Delta (Vietnam). Remote Sensing, 11(2), 128.
https://doi.org/10.3390/rs11020128
Praticò, S., Solano, F., Di, F. S., & Modica, G. (2021). Machine Learning classification of Mediterranean forest habitats in Google Earth Engine based on Seasonal Sentinel-2 Time-Series and input image Composition optimisation. Remote Sensing, 13(4), 586.
https://doi.org/10.3390/rs13040586
Quan, N. M., Ha, D. V., & Nguyen, N. Q. (2013). Analysis of cost efficiency and scale efficiency of purple onion farming households in Vinh Chau district, Soc Trang province: A non-parametric approach. Can Tho University Journal of Science, 28(2013), 33-37 (in Vietnamese). https://ctujsvn.ctu.edu.vn/index.php/ctujsvn/article/view/1681
Salonen, A. O., & Reiser, D. (2023). Climate change. In Encyclopedia of Sustainable Management (565–569). Springer Nature.
https://doi.org/10.1007/978-3-031-25984-5_75
Sebastian, L., Sander, B., Simelton, E., Zheng, S., Chu, H. T., Tran, N., Buu, C., Cao, Q., & Ngo, M. D. (2016). The drought and salinity intrusion in the Mekong River Delta of Vietnam: Assessment report. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). https://hdl.handle.net/10568/75633
Soc Trang Provincial Statistics Office. (2023). Soc Trang Statistical Yearbook 2023 (in Vietnamese). https://storage-vnportal.vnpt.vn/sme-g1/5808/PhongTonghop/NG%20Soc%20Trang%209.2023.signed.pdf
Sun, J., & Ongsomwang, S. (2023). Optimal parameters of random forest for land cover classification with suitable data type and dataset on Google Earth Engine. Frontiers in Earth Science, 11.
https://doi.org/10.3389/feart.2023.1188093
Swami, D., & Parthasarathy, D. (2020). Dynamics of exposure, sensitivity, adaptive capacity and agricultural vulnerability at district scale for Maharashtra, India. Ecological Indicators, 121(2021), 107206.
https://doi.org/10.1016/j.ecolind.2020.107206
Tarolli, P., Luo, J., Straffelini, E., Liou, Y., Nguyen, K., Laurenti, R., Masin, R., & D’Agostino, V. (2023). Saltwater intrusion and climate change impact on coastal agriculture. PLOS Water, 2(4), e0000121. https://doi.org/10.1371/journal.pwat.0000121
Thach, K. S. R., Lee, J. Y., Ha, M. T., Cao, M. T., Nayga, R. M., & Yang, J. (2023). Effect of saline intrusion on rice production in the Mekong River Delta. Heliyon, 9(10), e20367.
https://doi.org/10.1016/j.heliyon.2023.e20367
Tran, T. N. T., & Nguyen, P. T. (2014). The impact of climate change on salinity intrusion and Pangasius (Pangasianodon Hypophthalmus) farming in the Mekong Delta, Vietnam. Aquaculture International, 23(2), 523–534.
https://doi.org/10.1007/s10499-014-9833-z
Vo, T. Q., Nguyen, T. V., & Pham, V. Q. (2020). Integration of radar and optical imagery for land use mapping in Can Tho City. Can Tho University Journal of Science, 56(5), 20-29 (in Vietnamese). https://doi.org/10.22144/ctu.jvn.2020.108
Wassmann, R., Nguyen, H. X., Chu, H. T., & To, T. P. (2004). Sea level rise affecting the Vietnamese Mekong Delta: water elevation in the flood season and implications for rice production. Climatic Change, 66(1/2), 89–107.
https://doi.org/10.1023/b:clim.0000043144.69736.b7
Yommy, A. S., Liu, R., & Wu, A. S. (2015). SAR Image Despeckling Using Refined Lee Filter. 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, IEEE (2015).
https://doi.org/10.1109/ihmsc.2015.236