Phạm Duy Toàn * , Lâm Thành An , Nguyễn Ngọc Yến Lương Huỳnh Vủ Thanh

* Tác giả liên hệ (pdtoan@ctu.edu.vn)

Abstract

Eudragit RS30D, a copolymer of ethyl acrylate and methyl methacrylate, is swellable in water and sustains the drug release rate. Thus, this study prepared Eudragit RS30D-functionalized silk fibroin microparticles, loading the anti-inflammatory drug methylprednisolone (MP) for oral application. Fibroin was extracted from dried silk cocoons with an extraction efficiency of 32.7%. The co-condensation method was used to prepare the microparticles with the highest MP entrapment efficiency of 57.18 ± 6.99%, and sizes of 1-14 µm. The components of the microparticle system interacted with each other, as evidenced by the distinctive peaks of fibroin, Eudragit RS30D, and MP on the FT-IR spectrum. The microparticles could control the MP release rates in simulated gastro-intestinal conditions. The release process followed the Korsmeyer-Peppas kinetic model, which combines diffusion and decay/corrosion.

Keywords: Eudragit, fibroin, methylprednisolone, microparticles, silkworm

Tóm tắt

Eudragit RS30D là một copolymer của ethyl acrylate và methyl methacrylate có khả năng trương nở trong nước và kéo dài sự phóng thích hoạt chất. Do đó, hệ vi hạt fibroin phối trộn Eudragit RS30D tải hoạt chất kháng viêm methylprednisolone (MP) định hướng ứng dụng đường uống được bào chế trong nghiên cứu. Fibroin được chiết xuất từ kén tơ tằm khô với hiệu suất chiết 32,7%. Hệ vi hạt tải MP được bào chế bằng phương pháp đồng ngưng tụ có hiệu suất tải cao nhất đạt 57,18 ± 6,99%, với kích thước 1-14 µm. Các thành phần trong hệ vi hạt có sự tương tác với nhau thể hiện qua các mũi đặc trưng của fibroin, Eudragit RS30D và MP trên phổ FT-IR. Hệ vi hạt giải phóng MP có kiểm soát trong môi trường mô phỏng đường tiêu hóa. Quá trình giải phóng tuân theo mô hình động học Korsmeyer-Peppas, với cơ chế khuếch tán kết hợp phân rã.

Từ khóa: Eudragit, fibroin, methylprednisolone, tơ tằm, vi hạt

Article Details

Tài liệu tham khảo

Ding, Y., Dou, C., Chang, S., Xie, Z., Yu, D., Liu, Y., & Shao, J. (2020). Core–Shell Eudragit S100 Nanofibers Prepared via Triaxial Electrospinning to Provide a Colon-Targeted Extended Drug Release. Polymers, 12(9), 2034. https://doi.org/10.3390/polym12092034

Hasan, A. A., Sabry, S. A., Abdallah M. H., & El-Damasy D. A. (2016). Formulation and in Vitro Characterization of Poly(Dl-Lactide-Co-Glycolide)/Eudragit RLPO or RS30D Nanoparticles as an Oral Carrier of Levofloxacin Hemihydrate. Pharmaceutical Development and Technology, 21(6), 655–663. https://doi.org/10.3109/10837450.2015.1041044

Mehta, J., Rolta, R., Mehta, B. B., Kaushik, N., Choi, E. H., & Kaushik, N. K. (2022). Role of Dexamethasone and Methylprednisolone Corticosteroids in Coronavirus Disease 2019 Hospitalized Patients: A Review. Frontiers in Microbiology, 13, 813358. https://doi.org/10.3389/fmicb.2022.813358

Meinel, L., Betz, O., Fajardo, R., Hofmann, S., Nazarian, A., Cory, E., Hilbe, M., McCool, J., Langer, R., Vunjak-Novakovic, G., Merkle H. P., Rechenberg, B., Kaplan D. L., & Kirker-Head, C. (2006). Silk Based Biomaterials to Heal Critical Sized Femur Defects. Bone, 39(4), 922–931.
https://doi.org/10.1016/j.bone.2006.04.019

Napier, M. E., & DeSimone, J. M. (2007). Nanoparticle Drug Delivery Platform. Polymer Reviews, 47(3), 321–327. https://doi.org/10.1080/15583720701454999

Nguyen, N. Y., Nguyen, T. N. P., Huyen, N. N., Tran, V. D., Quyen, T. T. B., Luong, H. V. T., & Pham, D. T. (2023). Onto the Differences in Formulating Micro-/Nanoparticulate Drug Delivery System from Thai Silk and Vietnamese Silk: A Critical Comparison. Heliyon, 9(6), e16966.
https://doi.org/10.1016/j.heliyon.2023.e16966

Paarakh, M. P., Jose, P. A., Setty, C., & Peterchristoper, G. (2023). Release kinetics – concepts and applications. International Journal of Pharmacy Research & Technology, 8(1), 12–20. https://doi.org/10.31838/ijprt/08.01.02

Pan, X., Xie, F., Xiao, D., Zhou, X., & Xiao, J. (2020). Design, Synthesis, and Renal Targeting of Methylprednisolone-Lysozyme. International Journal of Molecular Sciences, 21(6), 1922. https://doi.org/10.3390/ijms21061922

Pham, D. T., Nguyen, T. L., Nguyen, T. T. L., Nguyen, T. T. P., Ho, T. K., Nguyen, N. Y., Tran, V. D., & Ha, T. K. Q. (2023). Polyethylenimine-Functionalized Fibroin Nanoparticles as a Potential Oral Delivery System for BCS Class-IV Drugs, a Case Study of Furosemide. Journal of Materials Science, 58, 9660–9674.
https://doi.org/10.1007/s10853-023-08640-y

Pham, D. T., Ha, T. K. Q., Nguyen, M. Q., Tran, V. D., Nguyen, V. B., & Quyen, T. T. B. (2022). Silk Fibroin Nanoparticles as a Versatile Oral Delivery System for Drugs of Different Biopharmaceutics Classification System (BCS) Classes: A Comprehensive Comparison. Journal of Materials Research, 37, 4169–4181. https://doi.org/10.1557/s43578-022-00782-0

Pham, D.T., Saelim, N., & Tiyaboonchai, W. (2018). Crosslinked fibroin nanoparticles using EDC or PEI for drug delivery: physicochemical properties, crystallinity and structure. Journal of Materials Science, 53, 14087–14103.
https://doi.org/10.1007/s10853-018-2635-3

Pham, D. T., & Tiyaboonchai, W. (2020). Fibroin Nanoparticles: A Promising Drug Delivery System. Drug Delivery, 27(1), 431–448.
https://doi.org/10.1080/10717544.2020.1736208

Turanlı, Y., Tort S., & Acartürk, F. (2019). Development and Characterization of Methylprednisolone Loaded Delayed Release Nanofiber. Journal of Drug Delivery Science and Technology, 49, 58–65. https://doi.org/10.1016/j.jddst.2018.10.031

Zheng, W., Sauer, D., & McGinity, J. W. (2005). Influence of Hydroxyethylcellulose on the Drug Release Properties of Theophylline Pellets Coated with Eudragit® RS 30 D. European Journal of Pharmaceutics and Biopharmaceutics, 59(1), 147–154. https://doi.org/10.1016/j.ejpb.2004.06.002