Sự hiện diện của các dạng nấm cộng sinh lan trong rễ và giá thể trồng lan kiếm (Cymbidium sp.) trồng tại Thành phố Hồ Chí Minh
Abstract
Orchid mycorrhizal fungi (OMF) play a crucial role in promoting water and nutrient absorption by the root system. The aim of this study was to evaluate the occurrence of OMF forms in the roots and growing media of Cymbidium sp. orchids cultivated at orchid gardens in Ho Chi Minh City. The root samples were stained with trypan blue according to TCVN 12560-2:2018 in order to observe hyphae morphology. The spore formed in the growing medium were collected using the wet sieving and decanting technique according to the Vietnam Standard TCVN 12560:1-2018 and stained with Melzer + PVLG in order to observe spore morphology. The results showed that four types of fungal hyphae were recorded in the roots. The SN1 strain was recorded at the most common form in the roots with an occurrence rate of 70.0%. The occurrence of eight spore forms were recognized in the growing media. OMF-1 was the dominant spore form in the growing media with the occurrence rate upto 100.0% and the highest average spore density of 2.00 spores/g of substrate.
Tóm tắt
Nấm cộng sinh lan (Orchid Mycorrhizal Fungi - OMF) đóng vai trò quan trọng trong việc giúp các loài lan hấp thu nước và dinh dưỡng. Mục tiêu được xác định trong nghiên cứu này là nhằm nhận diện sự hiện diện của các dạng nấm cộng sinh trong rễ và giá thể trồng lan tại một số vườn lan thuộc khu vực Thành phố Hồ Chí Minh. Các mẫu rễ lan được nhuộm với trypan blue theo TCVN 12560-2:2018 để quan sát hình thái sợi nấm. Bào tử trong giá thể được sàng lọc bằng kỹ thuật sàng ướt ly tâm nổi theo TCVN 12560:1-2018 và nhuộm bằng Melzer + PVLG để quan sát hình thái bào tử. Kết quả cho thấy trong rễ lan đã ghi nhận được bốn dạng sợi nấm, trong đó SN1 là dạng sợi nấm hiện diện phổ biến trong rễ lan với đặc điểm sợi nấm phân nhánh, có thắt eo tại vị trí phân nhánh và có vách ngăn với tỷ lệ xuất hiện là 70,0%. Trong giá thể đã ghi nhận được tám dạng bào tử; trong đó, OMF-1 là dạng bào tử có dạng hình tam giác, chiếm ưu thế với tỷ lệ xuất hiện là 100,0% và mật độ bào tử trung bình có giá trị cao nhất là 2,00 bào tử/g giá thể.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Álvarez-Lopeztello, J., Hernández-Cuevas, L. V., Castillo, R. F. D., & Robles, C. (2018). Second world record of Glomus trufemii (Glomeromycota: Fungi), an arbuscular mycorrhizal fungus from a Mexican savanna. Revista Mexicana de Biodiversidad, 89(1), 298-300. https://doi.org/10.22201/ib.20078706e.2018.1.2101
Albornoz, F. E., Ryan, M. H., Bending, G. D., Hilton, S., Dickie, I. A., Gleeson, D. B., & Standish, R. J. (2022). Agricultural land‐use favours Mucoromycotinian, but not Glomeromycotinian, arbuscular mycorrhizal fungi across ten biomes. New Phytologist, 233(3), 1369-1382. https://doi.org/10.1111/nph.17780
Aguilar-Trigueros, C. A., Hempel, S., Powell, J. R., Cornwell, W. K., & Rillig, M. C. (2019). Bridging reproductive and microbial ecology: a case study in arbuscular mycorrhizal fungi. The ISME Journal, 13(4), 873-884.
https://doi.org/10.1038/s41396-018-0314-7
Biermann, B., & Linderman, R. G. (1983). Use of vesicular‐arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. New Phytologist, 95(1), 97-105. https://doi.org/10.1111/j.1469-8137.1983.tb03472.x
Cameron, D. D., Leake, J. R., & Read, D. J. (2006). Mutualistic mycorrhiza in orchids: evidence from plant–fungus carbon and nitrogen transfers in the green‐leaved terrestrial orchid Goodyera repens. New Phytologist, 171(2), 405-416.
https://doi.org/10.1111/j.1469-8137.2006.01767.x
Cevallos, S., Sánchez-Rodríguez, A., Decock, C., Declerck, S., & Suárez, J. P. (2017). Are there keystone mycorrhizal fungi associated to tropical epiphytic orchids?. Mycorrhiza, 27, 225-232. https://doi.org/10.1007/s00572-016-0746-8
Ceulemans, T., Van Geel, M., Jacquemyn, H., Boeraeve, M., Plue, J., Saar, L., Kasari-Toussaint L., Peeters G., Acker K. V., Crauwels S., Lievens B., & Honnay, O. (2019). Arbuscular mycorrhizal fungi in European grasslands under nutrient pollution. Global Ecology and Biogeography, 28(12), 1796-1805. https://doi.org/10.1111/geb.12994
Chang, D. C. (2007). The screening of orchid mycorrhizal fungi (OMF) and their applications. In W. H. Chen, & H. H. Chen (Eds.), Orchid biotechnology (pp. 77 - 98). World Scientific. https://doi.org/10.1142/9789812775900_0005
Coughlan, A. P., Dalpé, Y., Lapointe, L., & Piché, Y. (2000). Soil pH-induced changes in root colonization, diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forests. Canadian Journal of Forest Research, 30(10), 1543-1554. https://doi.org/10.1139/x00-090
Davison, J., Garcia de Leon, D., Zobel, M., Moora, M., Bueno, C. G., Barceló, M., Gerz, M., León, D., Meng, Y., Pillar, V. D., Sepp, S., Soudzilovaskaia, N. A., Tedersoo, L., Vaessen, S., Vahter, T., Winck, B., & Öpik, M. (2020). Plant functional groups associate with distinct arbuscular mycorrhizal fungal communities. New Phytologist, 226(4), 1117-1128. https://doi.org/10.1111/nph.16423
Dearnaley, J. D. (2007). Further advances in orchid mycorrhizal research. Mycorrhiza, 17(6), 475-486.
https://doi.org/10.1007/s00572-007-0138-1
Dearnaley, J., Perotto, S., & Selosse, M. A., (2016). Structure and development of orchid mycorrhizas. In F. Martin (Eds.), Molecular Mycorrhizal Symbiosis (pp. 63 - 86). Wiley Blackwell.
https://doi.org/10.1002/9781118951446.ch5
Dang, U. T. K., Vo M. M., Nguyen, H. V. (2019). Collection, Isolation, and Evaluation of Root Mycorrhizal Fungal (Arbuscular Mycorrhizal) Invasion in the Mekong Delta Region. Journal of Vietnam Agricultural Science and Technology, 10(107), 111-118 (in Vietnamese).
Girlanda, M., Segreto, R., Cafasso, D., Liebel, H. T., Rodda, M., Ercole, E., Cozzolino, S., Gebauer, G., & Perotto, S.. (2011). Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. American Journal of Botany, 98(7), 1148-1163. https://doi.org/10.3732/ajb.1000486
Hossain, M. M., Rahi, P., Gulati, A., & Sharma, M. (2013). Improved ex vitro survival of asymbiotically raised seedlings of Cymbidium using mycorrhizal fungi isolated from distant orchid taxa. Scientia Horticulturae, 159, 109-116.
https://doi.org/10.1016/j.scienta.2013.05.003
Hossain, M. M., & Sharma, M. (2019). Dual phase regeneration system for mass propagation of Cymbidium aloifolium (L.) Sw.: A High Value Medicinal Orchid. Plant Tissue Culture and Biotechnology, 29(2), 257-266. https://doi.org/10.3329/ptcb.v29i2.44514
Jacquemyn, H., Duffy, K. J., & Selosse, M. A. (2017). Biogeography of orchid mycorrhizas. In L. Tedersoo (Eds), Biogeography of mycorrhizal symbiosis (pp. 159-177). Springer, Cham. https://doi.org/10.1007/978-3-319-56363-3_8 DOI: 10.1007/978-3-319-56363-3_8
Kohler, A., Kuo, A., Nagy, L. G., Morin, E., Barry, K., Buscot, F., Canbäck, B., Choi, C., Cichocki, N., Clum, A., Colpaert, J., Copeland, A. C., Costa, M. D., Doré, J., Floudas, D., Gay, G., Girlanda, M., Henrissat, B., Herrmann, S., Hess, J., Högberg, N., Johansson, T., Khouja, H.-R., Labutti, K., Lahrmann, U., Levasseur, A., Lindquist, E. A., Lipzen, A., Marmeisse, R., Martino, E., Murat, C., Ngan, C., Nehls, U., Plett, J. M., Pringle, A., Ohm, R. A., Perotto, S., Peter, M., Riley, R., Rineau, F., Ruytinx, J., Salamov, A., Shah, F., Sun, H., Tarkka, M., Tritt, A., Veneault-Fourrey, C., Zuccaro, A., Tunlid, A., Grigoriev, I. V., Hibbett, D., & Martin, F. M. (2015). Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics, 47(4), 410-415.
https://doi.org/10.1038/ng.3223
Klironomos, J. N., & Hart, M. M. (2002). Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza, 12, 181-184.
https://doi.org/10.1007/s00572-002-0169-6
Ma, X., Xu, X., Geng, Q., Luo, Y., Ju, C., Li, Q., & Zhou, Y. (2023). Global arbuscular mycorrhizal fungal diversity and abundance decreases with soil available phosphorus. Global Ecology and Biogeography, 32(8), 1423-1434. https://doi.org/10.1111/geb.13704
Manning, J. C., & Van, S. J. (1987). The development and mobilisation of seed reserves in some African orchids. Australian Journal of Botany, 35(3), 343-353. https://doi.org/10.1071/BT9870343
Phan, N. T. K., Tran, N. G., & Pham, D. T. T. (2024). Survey on the presence and distribution of orchid mycorrhizal fungi in the roots and substrate of 3 orchid species Dendrobium sp., Phalaenopsis sp., and Cymbidium sp. grow in Thu Duc City. Can Tho University Journal of Science, 60(1), 131-137 (in Vietnamese). DOI: 10.22144/ctujos.2023.230
Pereira, G., Romero, C., Suz, L. M., & Atala, C. (2014). Essential mycorrhizal partners of the endemic Chilean orchids Chloraea collicensis and C. gavilu. Flora Morphology, Distribution, Functional Ecology of Plants, 209(2), 95-99. https://doi.org/10.1016/j.flora.2013.12.001
Sathiyadash, K., Muthukumar, T., Karthikeyan, V., & Rajendran, K. (2020). Orchid mycorrhizal fungi: structure, function, and diversity. Orchid biology: recent trends & challenges, 239-280.
https://doi.org/10.1007/978-981-32-9456-1_13
Selosse, M. A., Boullard, B., & Richardson, D. (2011). Noël Bernard (1874–1911): orchids to symbiosis in a dozen years, one century ago. Symbiosis, 54(2), 61-68. https://doi.org/10.1007/s13199-011-0131-5
Smith, S. E., & Read, D. J. (2010). Mycorrhizal symbiosis. Academic press.
Stöckel, M., Těšitelová, T., Jersáková, J., Bidartondo, M. I., & Gebauer, G. (2014). Carbon and nitrogen gain during the growth of orchid seedlings in nature. New Phytologist, 202(2), 606-615. https://doi.org/10.1111/nph.12688
Shubha, J. (2022). Evaluation of antibacterial, phytochemical and antioxidant activities of endophytic fungi from Cymbidium aloifolium, an epiphytic orchid. Journal of Cytology and Genetics, 23, 47-58.
Rajkumar, H. G., Seema, H. S., & Sunil Kumar, C. P. (2012). Diversity of arbuscular mycorrhizal fungi associated with some medicinal plants in Western Ghats of Karnataka region, India. World Journal of Science and Technology, 2(1), 13-20. https://doi.org/10.3329/ptcb.v29i2.44514
Veldre, V., Abarenkov, K., Bahram, M., Martos, F., Selosse, M. A., Tamm, H., ... & Tedersoo, L. (2013). Evolution of nutritional modes of Ceratobasidiaceae (Cantharellales, Basidiomycota) as revealed from publicly available ITS sequences. Fungal Ecology, 6(4), 256-268.
https://doi.org/10.1016/j.funeco.2013.03.004
Wang, T., Song, Z., Wang, X., Xu, L., Sun, Q., & Li, L. (2018). Functional insights into the roles of hormones in the Dendrobium officinale - Tulasnella sp. germinated seed symbiotic association. International Journal of Molecular Sciences, 19(11), 3484. https://doi.org/10.3390/ijms19113484
Wang, G. M., Stribley, D. P., Tinker, P. B., & Walker, C. (1993). Effects of pH on arbuscular mycorrhiza I. Field observations on the long‐term liming experiments at Rothamsted and Woburn. New Phytologist, 124(3), 465-472. https://doi.org/10.1111/j.1469-8137.1993.tb03837.x
Zhao, X., Zhang, J., Chen, C., Yang, J., Zhu, H., Liu, M., & Lv, F. (2014). Deep sequencing–based comparative transcriptional profiles of Cymbidium hybridum roots in response to mycorrhizal and non-mycorrhizal beneficial fungi. BMC Genomics, 15, 1-22. https://doi.org/10.1186/1471-2164-15-747