Phân tích xu thế biến đổi lượng mưa theo vùng sinh thái ở tỉnh Kiên Giang trong giai đoạn từ năm 1992 đến năm 2023
Abstract
This study analyzed rainfall variability across three typical ecological zones in Kien Giang Province from 1992 to 2023, using the non-parametric Mann–Kendall test and Sen’s slope estimator. The results indicated that the total annual rainfall generally showed no significant changes, but clear spatial and temporal variations existed. In the freshwater zone, rainfall significantly increased in January, September, and annually, with a notable rise in Chau Thanh. Rainfall trends in Giong Rieng and Go Quao showed significant decreases in August (p ≤ 0,05). In the brackish water zone, rainfall increased in September and during the dry season at Kien Luong, whereas a significant decrease was observed in August at Hon Dat and Ha Tien (p ≤ 0,05). In the saline water zone, rainfall trends increased in September and at An Bien, while Vinh Thuan experienced a slight decrease (p ≤ 0,05). The study confirmed the influence of climate change on rainfall distribution, highlighting the need for appropriate adjustments in production strategies and water resource management tailored to each ecological zone.
Tóm tắt
Trong nghiên cứu, việc phân tích biến động lượng mưa tại ba vùng sinh thái điển hình Kiên Giang, giai đoạn 1992 – 2023 đã được thực hiện bằng cách sử dụng kiểm định phi tham số Mann-Kendall và ước lượng Sen’s slope. Kết quả cho thấy tổng lượng mưa hàng năm nhìn chung không thay đổi đáng kể, nhưng tồn tại sự khác biệt rõ rệt theo không gian và thời gian. Vùng nước ngọt, lượng mưa tăng có ý nghĩa thống kê vào tháng 1, tháng 9 và cả năm, nổi bật tại Châu Thành. Xu hướng giảm lượng mưa tại Giồng Riềng và Gò Quao vào tháng 8 (p ≤ 0,05). Tại vùng nước lợ, lượng mưa tăng vào tháng 9 và mùa khô tại Kiên Lương, nhưng giảm vào tháng 8 ở Hòn Đất và Hà Tiên, với các xu hướng đều có ý nghĩa thống kê (p ≤ 0,05). Vùng nước mặn, xu hướng tăng vào tháng 9 và tại An Biên, trong khi Vĩnh Thuận giảm nhẹ (p ≤ 0,05). Kết quả nghiên cứu giúp khẳng định tác động của biến đổi khí hậu đến phân bố lượng mưa, đòi hỏi điều chỉnh chiến lược sản xuất và quản lý tài nguyên nước phù hợp.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Bari, S. H., Rahman, M. T. U., Hoque, M. A., & Hussain, M. M. (2016). Analysis of seasonal and annual rainfall trends in the northern region of Bangladesh. Atmospheric Research, 176, 148–158.
https://doi.org/10.1016/j.atmosres.2016.02.008
Basharin, D., & Stankūnavičius, G. (2022). European precipitation response to Indian ocean dipole events. Atmospheric Research, 273(155), 106142.
https://doi.org/10.1016/j.atmosres.2022.106142
Brown, D., Polsky, C., Bolstad, P. V., Brody, S. D., Hulse, D., Kroh, R., Loveland, T., & Thomson, A. M. (2014). Land use and land cover change. Pacific Northwest National Lab.(PNNL), Richland, WA (United States). https://www.osti.gov/biblio/1182345
Caloiero, T. (2020). Evaluation of rainfall trends in the South Island of New Zealand through the innovative trend analysis (ITA). Theoretical and Applied Climatology, 139(1–2), 493–504. https://doi.org/10.1007/s00704-019-02988-5
Camberlin, P. (2017). Temperature trends and variability in the Greater Horn of Africa: Interactions with precipitation. Climate Dynamics, 48(1–2), 477–498. https://doi.org/10.1007/s00382-016-3088-5
Dang, V. H., Tran, D. D., Cham, D. D., Phan, H. T. T., Nguyen, H. T., Truong, H. V., Tran, P. H., Duong, M. B., Nguyen, N. T., & Le, K. V. (2020). Assessment of rainfall distributions and characteristics in coastal provinces of the Vietnamese Mekong Delta under climate change and ENSO processes. Water, 12(6), 1555. https://doi.org/10.3390/w12061555
Das, S., Kamruzzaman, M., & Islam, A. R. M. T. (2022). Assessment of characteristic changes of regional estimation of extreme rainfall under climate change: A case study in a tropical monsoon region with the climate projections from CMIP6 model. Journal of Hydrology, 610, 128002.
https://doi.org/10.1016/j.jhydrol.2022.128002
Fowler, H. J., Ali, H., Allan, R. P., Ban, N., Barbero, R., Berg, P., Blenkinsop, S., Cabi, N. S., Chan, S., Dale, M., Dunn, R. J. H., Ekström, M., Evans, J. P., Fosser, G., Golding, B., Guerreiro, S. B., Hegerl, G. C., Kahraman, A., Kendon, E. J., … Whitford, A. (2021). Towards advancing scientific knowledge of climate change impacts on short-duration rainfall extremes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2195), 20190542. https://doi.org/10.1098/rsta.2019.0542
Furl, C., Sharif, H. O., Alzahrani, M., El Hassan, A., & Mazari, N. (2014). Precipitation Amount and Intensity Trends Across Southwest Saudi Arabia. JAWRA Journal of the American Water Resources Association, 50(1), 74–82. https://doi.org/10.1111/jawr.12118
Gadedjisso-Tossou, A., Adjegan, K. I., & Kablan, A. K. M. (2021). Rainfall and temperature trend analysis by Mann–Kendall test and significance for Rainfed Cereal Yields in Northern Togo. Sci, 3(1), 17. https://doi.org/10.3390/sci3010017
Gbobaniyi, E., Sarr, A., Sylla, M. B., Diallo, I., Lennard, C., Dosio, A., Dhiédiou, A., Kamga, A., Klutse, N. A. B., & Hewitson, B. (2014). Climatology, annual cycle and interannual variability of precipitation and temperature in CORDEX simulations over West Africa. International Journal of Climatology, 34(7). https://doi.org/10.1002/joc.3834
General Statistics Office. (2023). Vietnam Statistical Yearbook 2022. Statistical Publishing House.
Gil-Alana, L. A., Yaya, O. S., & Fagbamigbe, A. F. (2019). Time series analysis of quarterly rainfall and temperature (1900–2012) in sub-Saharan African countries. Theoretical and Applied Climatology, 137(1–2), 61–76. https://doi.org/10.1007/s00704-018-2583-5
Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. John Wiley & Sons.
Güçlü, Y. S. (2020). Improved visualization for trend analysis by comparing with classical Mann-Kendall test and ITA. Journal of Hydrology, 584, 124674.
https://doi.org/10.1016/j.jhydrol.2020.124674
Ha, T. T., Nguyen, B. T., & Van, T. P. D. (2022). Potential for developments of agriculture, forestry, fishery and marine economy in Kien Giang province within the context of the Vietnamese Mekong Delta and international linkages. Can Tho University Journal of Science, 58(3), 115–125. https://doi.org/10.22144/ctu.jvn.2022.065
Haldar, S., Choudhury, M., Choudhury, S., & Samanta, P. (2023). Trend analysis of long-term meteorological data of a growing metropolitan city in the era of global climate change. Total Environment Research Themes, 7, 100056. https://doi.org/10.1016/j.totert.2023.100056
Hollander, M., Wolfe, D. A., & Chicken, E. (2013). Nonparametric statistical methods. John Wiley & Sons.
Huynh, M. V. T., Bui, L. T. B., Dang, N. H. T., Tran, T. V., Nguyen, V. C., Nguyen, C. P., Downes, N. K., Meraj, G., & Kumar, P. (2024). Understanding rainfall distribution characteristics over the Vietnamese Mekong Delta: A comparison between coastal and inland localities. Atmosphere, 15(2), 217.
https://doi.org/10.3390/atmos15020217
Jha, M. K., & Singh, A. K. (2013). Trend analysis of extreme runoff events in major river basins of Peninsular Malaysia. International Journal of Water, 7(1/2), 142. https://doi.org/10.1504/IJW.2013.051995
Karthik, V. C., Vinay, H. T., Jagadeesh, M. S., Ragini, H. R., Prem, G., & Pavithra, V. (2024). Analysis of Rainfall Trends and Change Point Detection in Kodagu District, Karnataka. British Journal of Environment & Climate Change, 14(9), 33–43. https://doi.org/10.9734/ijecc/2024/v14i94389
Kendall, M. G. (1948a). Rank correlation methods. Griffin. https://psycnet.apa.org/record/1948-15040-000
Kendall, M. G. (1948b). Rank correlation methods. Charles Griffin.
Kendall, M. G. (1975). Rank Correlation Methods (4th edition). Charles Griffin.
Kien Giang Department of Agriculture and Rural Development. (2021). Report on the Agricultural Production Summary of Kien Giang Province in 2020 and the Production Plan for 2021.
Kliengchuay, W., Mingkhwan, R., Kiangkoo, N., Suwanmanee, S., Sahanavin, N., Kongpran, J., Aung, H. W., & Tantrakarnapa, K. (2024). Analyzing temperature, humidity, and precipitation trends in six regions of Thailand using innovative trend analysis. Scientific Reports, 14(1), 7800. https://doi.org/| https://doi.org/10.1038/s41598-024-57980-5
Kothawale, D. R., & Rajeevan, M. (2017). Monthly, seasonal, annual rainfall time series for all-india, homogeneous regions, meteorological subdivisions: 1871-2016.
Kumar, K. K., Kamala, K., Rajagopalan, B., Hoerling, M. P., Eischeid, J. K., Patwardhan, S. K., Srinivasan, G., Goswami, B. N., & Nemani, R. (2011). The once and future pulse of Indian monsoonal climate. Climate Dynamics, 36(11–12), 2159–2170. https://doi.org/10.1007/s00382-010-0974-0
Kumar, N., Panchal, C. C., Chandrawanshi, S. K., & Thanki, J. D. (2017). Analysis of rainfall by using Mann-Kendall trend, Sen’s slope and variability at five districts of south Gujarat, India. Mausam, 68(2), 205–222. https://doi.org/10.54302/mausam.v68i2.604
Le, H. H. (2024). Kien Giang develops agriculture as the mainstay of the economy. https://vpubnd.kiengiang.gov.vn:443/Trang/TinTuc/ChiTiet.aspx?nid=9452&chuyenmuc=147
Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 245–259. https://doi.org/10.2307/1907187
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., & Gomis, M. I. (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 2(1), 2391.
https://doi.org/10.1017/9781009157896
Mercado-Bettín, D., Clayer, F., Shikhani, M., Moore, T. N., Frías, M. D., Jackson-Blake, L., Sample, J., Iturbide, M., Herrera, S., & French, A. S. (2021). Forecasting water temperature in lakes and reservoirs using seasonal climate prediction. Water Research, 201, 117286. https://doi.org/10.1016/j.watres.2021.117286
Mondal, A., Khare, D., & Kundu, S. (2015). Spatial and temporal analysis of rainfall and temperature trend of India. Theoretical and Applied Climatology, 122, 143–158. https://doi.org/10.1007/s00704-014-1283-z.
Moore, J. W., & Schindler, D. E. (2022). Getting ahead of climate change for ecological adaptation and resilience. Science, 376(6600), 1421–1426.
https://doi.org/10.1126/science.abo3608
Nacar, S. (2023). Trends of high and low values of annual and seasonal precipitation in Turkey. Sustainability, 15(23), 16523. https://doi.org/10.3390/su152316523
Nelson, D. R. (2011). Adaptation and resilience: Responding to a changing climate. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 113–120.
https://doi.org/10.1002/wcc.91
Nguyen, N. T., & Nguyen, T. T. X. (2019). Application of the ahp weighting method to identify vulnerability indicators to impacts of climate change in Con Dao island. Journal of Water resources & Environmental engineering, 64, 25–35.
Nguyen, T. V. (2017). Report on current status and solutions for rice production and aquaculture in Kien Giang province until 2020. Department of Agriculture and Rural Development of Kien Giang.
Noor, M., HALEK, M. A., Lim, A., & Ahmat, H. (2023). Rainfall intensity classification in the East Coast of Malaysia using discriminant analysis. Journal of Sustainability Science and Management, 18(7), 87–102. https://doi.org/10.46754/jssm.2023.07.006
Pal, A. B., Khare, D., Mishra, P. K., & Singh, L. (2017). Trend analysis of rainfall, temperature and runoff data: A case study of Rangoon watershed in Nepal. Int. J. Stud. Res. Technol. Manag, 5, 21–38. https://doi.org/doi.org/10.18510/ijsrtm.2017.535
Panda, A., & Sahu, N. (2019). Trend analysis of seasonal rainfall and temperature pattern in Kalahandi, Bolangir and Koraput districts of Odisha, India. Atmospheric Science Letters, 20(10), e932. https://doi.org/10.1002/asl.932
Pitman, A. J., de Noblet-Ducoudré, N., Avila, F. B., Alexander, L. V., Boisier, J.-P., Brovkin, V., Delire, C., Cruz, F., Donat, M. G., & Gayler, V. (2012). Effects of land cover change on temperature and rainfall extremes in multi-model ensemble simulations. Earth System Dynamics, 3(2), 213–231. https://doi.org/10.5194/esd-3-213-2012
Ragatoa, D. S., Ogunjobi, K. O., Okhimamhe, A. A., Francis, S. D., & Adet, L. (2018). A trend analysis of temperature in selected stations in Nigeria using three different approaches. Open Access Library Journal, 5(2), 1–17. https://doi.org/10.4236/oalib.1104371
Sa’adi, Z., Shahid, S., Ismail, T., Chung, E.-S., & Wang, X.-J. (2019a). Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test. Meteorology and Atmospheric Physics, 131(3), 263–277. https://doi.org/10.1007/s00703-017-0564-3
Sa’adi, Z., Shahid, S., Ismail, T., Chung, E.-S., & Wang, X.-J. (2019b). Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test. Meteorology and Atmospheric Physics, 131, 263–277. https://doi.org/10.1007/s00703-017-0564-3
Sai, K. V., & Joseph, A. (2018). Trend analysis of rainfall of Pattambi region, Kerala, India. Int J Curr Microbiol App Sci, 7(9), 3274–3281. https://doi.org/10.20546/ijcmas.2018.709.406
Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., & Miller, H. (2007). IPCC fourth assessment report (AR4). Climate Change, 374.
Thuy T. (2022). Hon Dat, one of Kien Giang’s primary rice-producing regions. Báo Kiên Giang. https://www.baokiengiang.vn/nong-nghiep/hon-dat-vung-san-xuat-lua-gao-trong-diem-cua-kien-giang-11347.html
Toros, H., Abbasnia, M., Sagdic, M., & Tayanç, M. (2017). Long-Term Variations of Temperature and Precipitation in the Megacity of Istanbul for the Development of Adaptation Strategies to Climate Change. Advances in Meteorology, 2017, 1–14. https://doi.org/10.1155/2017/6519856
Touhedi, H., Kankal, M., & Yıldız, M. B. (2023). Trend analysis of maximum rainfall series of standard durations in Turkey with innovative methods. Natural Hazards, 119(3), 1479–1511. https://doi.org/10.1007/s11069-023-06085-9
Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47(1–2), 123–138. https://doi.org/10.3354/cr00953
Van Aalst, M. K. (2006). The impacts of climate change on the risk of natural disasters. Disasters, 30(1), 5–18. https://doi.org/10.1111/j.1467-9523.2006.00303.x
Vo, T. Q., Roelvink, D., Van Der Wegen, M., Reyns, J., Kernkamp, H., Giap, V. V., & Vo, L. T. P. (2020). Flooding in the Mekong Delta: The impact of dyke systems on downstream hydrodynamics. Hydrology and Earth System Sciences, 24(1), 189–212. https://doi.org/10.5194/hess-24-189-2020
Wang, Y., Xu, Y., Tabari, H., Wang, J., Wang, Q., Song, S., & Hu, Z. (2020). Innovative trend analysis of annual and seasonal rainfall in the Yangtze River Delta, eastern China. Atmospheric Research, 231, 104673. https://doi.org/10.1016/j.atmosres.2019.104673
Yilmaz, A., & Perera, B. (2015). Spatiotemporal trend analysis of extreme rainfall events in Victoria, Australia. Water Resources Management, 29, 4465–4480. https://doi.org/10.1007/s11269-015-1070-3
Yıldız, M. B., Kankal, M., Nacar, S., Linh, N. T. T., Hoa, H. V., & Nam, V. T. (2024). Investigation of precipitation trends in Lower Mekong Delta River Basin of Vietnam by innovative trend analysis methods. Theoretical and Applied Climatology, 155(12), 10033–10050. https://doi.org/10.1007/s00704-024-05221-0