Ứng dụng ảnh viễn thám độ phân giải cao thành lập bản đồ hiện trạng cây ăn trái tại huyện Chợ Lách, tỉnh Bến Tre
Abstract
The study utilizes high-resolution satellite imagery from Google Satellite and Planet Nicfi, combined with the Object-Based Image Analysis (OBIA) method and Support Vector Machine (SVM) algorithm to create a map of fruit tree distribution in Cho Lach District, Ben Tre Province in 2024. The classification results demonstrate high reliability, achieving an overall accuracy of 92.6% and a Kappa coefficient of 0.9. The spatial distribution of fruit trees shows that durian occupies the largest area, covering 5,388.9 ha (32.0% of the total natural area), followed by nursery plantations (19.6%), rambutan (11.9%) and coconut (7.4%). The research provides detailed information on the distribution of fruit trees in Cho Lach District, while also offering valuable data to support efficient land management and agricultural land-use planning, contributing significantly to the sustainable development of the agricultural sector in Ben Tre Province.
Tóm tắt
Nghiên cứu sử dụng dữ liệu ảnh vệ tinh độ phân giải cao từ Google Satellite và Planet Nicfi kết hợp phương pháp phân loại theo hướng đối tượng (OBIA) - thuật toán máy vector hỗ trợ (SVM) để xây dựng bản đồ hiện trạng cây ăn trái tại huyện Chợ Lách, tỉnh Bến Tre năm 2024. Kết quả phân loại đạt độ tin cậy cao với độ chính xác toàn cục và hệ số Kappa lần lượt là 92,6% và 0,9. Sầu riêng là loại cây trồng chiếm diện tích lớn nhất với 5.388,9 ha (32,0% tổng diện tích tự nhiên), tiếp theo là vườn ươm giống (19,6%), chôm chôm (11,9%) và dừa (7,4%). Kết quả nghiên cứu cung cấp thông tin chi tiết về hiện trạng phân bố các loại cây ăn trái, hỗ trợ hiệu quả cho công tác quản lý và quy hoạch sử dụng đất nông nghiệp tại huyện Chợ Lách, đồng thời đóng góp quan trọng vào việc định hướng phát triển bền vững ngành nông nghiệp của tỉnh Bến Tre.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Alawathugoda, C., Hinge, G., Elkollaly, M., & Hamouda, M. A. (2024). Impact of utilizing High-Resolution PlanetScope imagery on the accuracy of LULC mapping and hydrological modeling in an arid region. Water, 16(16), 2356.
https://doi.org/10.3390/w16162356
Chabalala, Y., Adam, E., & Kganyago, M. (2023). Mapping fruit tree dynamics using phenological metrics from optimal Sentinel-2 data and Deep Neural Network. CABI Agriculture and Bioscience, 4(1), 1–20.
https://doi.org/10.1186/s43170-023-00193-z
Congalton, R. G., & Green, K. (1999) Assessing the Accuracy of Remotely Sensed Data Principles and Practices. Lewis Publishers, Boca Raton. https://doi.org/10.1201/9781420048568
Dey, V. (2011). A Supervised Approach for the Estimation of Parameters of Multiresolution Segmentation and its Application in Building Feature Extraction from VHR Imagery. M.Sc.E. thesis, Department of Geodesy and Geomatics Engineering Technical Report No. 278, University of New Brunswick, Fredericton, New Brunswick, Canada, 162 pp.
Feng, F., Gao, M., Liu, R., Yao, S., & Yang, G. (2023). A deep learning framework for crop mapping with reconstructed Sentinel-2 time series images. Computers and Electronics in Agriculture, 213(2023), 108227.
https://doi.org/10.1016/j.compag.2023.108227
Gallo, I., Ranghetti, L., Landro, N., La Grassa, R., & Boschetti, M. (2022). In-season and dynamic crop mapping using 3D convolution neural networks and sentinel-2 time series. ISPRS Journal of Photogrammetry and Remote Sensing, 195(2023), 335–352.
https://doi.org/10.1016/j.isprsjprs.2022.12.005
Jiang, Z., Huete, A. R., Chen, J., Chen, Y., Li, J., Yan, G., & Zhang, X. (2006). Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sensing of Environment, 101(3), 366–378. https://doi.org/10.1016/j.rse.2006.01.003
Lanaras, C., Bioucas-Dias, J., Galliani, S., Baltsavias, E., & Schindler, K. (2018). Super-resolution of Sentinel-2 images: Learning a globally applicable deep neural network. ISPRS Journal of Photogrammetry and Remote Sensing, 146(2018), 305–319.
https://doi.org/10.1016/j.isprsjprs.2018.09.018
Le, D. V. (2018). Management and improvement of the quality of Cho Lach seedling: Results achieved from a research project. Research and Application of Science and Technology. Department of Agriculture and Rural Development of Cho Lach (in Vietnamese). http://dost-bentre.gov.vn/tin-tuc/1864/quan-ly-nang-cao-chat-luong-cay-giong-cho-lach-ket-qua-dat-duoc-tu-mot-de-tai-nghien-cuu
Le, H. N., Nguyen, S. H., & Le, L. P. C. (2024). Application of remote sensing and Google Earth engine in developing the 2023 agricultural land use map for Hoa Vang district, Da Nang city. Hue University Journal of Science: Agriculture and Rural Development, 113(3B), 17-33 (in Vietnamese). DOI: 10.26459/hueunijard.v133i3B.7443
Le, T. V. (2005). Remote Sensing. Vietnam National University Press, Ho Chi Minh City (in Vietnamese).
Maxwell, T. (2005). Object-orientated classification: Classification of pan-sharpened QuickBird imagery and a fuzzy approach to improving image segmentation efficiency. University of New Brunswick.
Ministry of Home Affairs of the Socialist Republic of Vietnam. (2020). Cho Lach District (Ben Tre): Developing a cultural tourism village in alignment with the One Commune One product program and implementation orientation for the post-2020 period (in Vietnamese).
https://moha.gov.vn/nong-thon-moi/tin tuc/Pages/listbnv.aspx?CateID=31&ItemID=2019
Nabil, M., Farg, E., Arafat, S. M., Aboelghar, M., Afify, N. M., & Elsharkawy, M. M. (2022). Tree-fruits crop type mapping from Sentinel-1 and Sentinel-2 data integration in Egypt’s New Delta project. Remote Sensing Applications Society and Environment, 27(2022), 100776.
https://doi.org/10.1016/j.rsase.2022.100776
Nguyen, L. V. & Phan, D. K. (2023). Application of remote sensing to support land use inventory and map construction at the district level: A case study in Thap Muoi District, Dong Thap Province. Can Tho University Journal of Science, 59(Environment and Climate Change), 193–202 (in Vietnamese). https://doi.org/10.22144/ctu.jvn.2023.121
Nguyen, N. B., Le, Q. N. P., Nguyen, N. H. & Tran, D. T. (2019). Using remote sensing images to monitor floods and assess damage to agricultural land in Quang Dien District, Thua Thien Hue Province. Can Tho University Journal of Science, 55 (Environment), 154-163 (in Vietnamese).
https://doi.org/10.22144/ctu.jsi.2019.142
Pan, Z., Huang, J., Zhou, Q., Wang, L., Cheng, Y., Zhang, H., Blackburn, G. A., Yan, J., & Liu, J. Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data. Int. J. Appl. Earth Obs. Geoinf, 34(2015), 188–197. https://doi.org/10.1016/j.jag.2014.08.011
Pena, M. A., Liao, R., & Brenning, A. Using spectrotemporal indices to improve the fruit-tree crop classification accuracy. ISPRS J. Photogramm, 128(2017), 158–169. https://doi.org/10.1016/j.isprsjprs.2017.03.019
Pham, D. V., Vu, T. T., & Nguyen, H. Q. (2016). Estimation Value of the object-oriented optimal segmentation parameters within eCognition software: experiments in satellite images Spot6. Journal of Forest Science and Technology, 6(2016), 18-30 (in Vietnamese).
Singh, R., Patel, N. R., & Danodia, A. (2022). Deriving Phenological Metrics from Landsat-OLI for Sugarcane Crop Type Mapping: A Case Study in North India. Journal of the Indian Society of Remote Sensing, 50(6), 1021–1030.
https://doi.org/10.1007/s12524-022-01515-w
Soliman, M., Morsy, M. M., & Radwan, H. G. (2022). Assessment of Implementing Land Use/Land Cover LULC 2020-ESRI Global Maps in 2D Flood Modeling Application. Water, 14(23), 3963. https://doi.org/10.3390/w14233963
Sowmya, D. R., Hegde, V. S., Suhas, J., Hegdekatte, R. V., Shenoy, P. D., & Venugopal, K. R. (2017). Land Use/ Land Cover Classification of Google Earth Imagery. IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE) (10–13). https://doi.org/10.1109/wiecon-ece.2017.8468898
Tejasree, G., & Agilandeeswari, L. (2024). Land use/land cover (LULC) classification using deep-LSTM for hyperspectral images. The Egyptian Journal of Remote Sensing and Space Science, 27(1), 52–68.
https://doi.org/10.1016/j.ejrs.2024.01.004
Vietnam National Authority of Tourism. (2014). Back to the Gardens of Cho Lach (Ben Tre) (in Vietnamese).
https://vietnamtourism.gov.vn/post/14442
Vo, K. T. (2015). The factors affecting the household- income in Cho Lach district, BenTre province. Tra Vinh University Journal of Science, 18(2015), 59-65 (in Vietnamese).
Wagner, F. H., Dalagnol, R., Silva-Junior, C. H. L., Carter, G., Ritz, A. L., Hirye, M. C. M., Ometto, J. P. H. B., & Saatchi, S. (2023). Mapping Tropical Forest Cover and Deforestation with Planet NICFI Satellite Images and Deep Learning in Mato Grosso State (Brazil) from 2015 to 2021. Remote Sensing, 15(2), 521.
https://doi.org/10.3390/rs15020521
Xu, W., Li, Z., Lin, H., Shao, G., Zhao, F., Wang, H., Cheng, J., Lei, L., Chen, R., Han, S., & Yang, H. (2024). Mapping Fruit-Tree Plantation Using Sentinel-1/2 Time Series Images with Multi-Index Entropy Weighting Dynamic Time Warping Method. Remote Sensing, 16(18), 3390.
https://doi.org/10.3390/rs16183390
Yin, H., Pflugmacher, D., Kennedy, R. E., Sulla-Menashe, D., & Hostert, P. (2014). Mapping annual land use and land cover changes using MODIS time series. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(8), 3421–3427.
https://doi.org/10.1109/jstars.2014.2348411
Zhang, T., Su, J., Liu, C., & Chen, W. (2019). Potential bands of Sentinel-2A satellite for classification problems in precision agriculture. International Journal of Automation and Computing, 16(1), 16–26.
https://doi.org/10.1007/s11633-018-1143-x
Zhou, X., Li, Y., Luo, Y., Sun, Y., Su, Y., Tan, C., & Liu, Y. (2022). Research on remote sensing classification of fruit trees based on Sentinel-2 multi-temporal imageries. Scientific Reports, 12(1), 11549.
https://doi.org/10.1038/s41598-022-15414-0