Đánh giá xu thế lượng mưa và nhiệt độ sử dụng kiểm định phi tham số tại tỉnh Kiên Giang, Việt Nam
Abstract
This study assessed climate change trends in Kien Giang using rainfall data from 1979 to 2022 and temperature data from 1992 to 2022, analyzed on annual, seasonal, and monthly scales. Non-parametric methods, including the Mann–Kendall test, Sen’s Slope, Sequential Mann–Kendall (SMK), and Innovative Trend Analysis (ITA), were applied. The results revealed statistically significant increases in total dry-season rainfall, the number of rainy days during the dry season, and annual rainy days (p ≤ 0,05). In contrast, wet-season rainfall showed a slight but statistically insignificant decline. Rainfall in January increased notably (p = 0,024), reflecting a trend toward wetter drier seasons. Maximum temperature (Tmax) exhibited a slight decreasing trend, whereas minimum temperature (Tmin) increased significantly, particularly in the early months of the year, indicating a clear warming trend. Despite the slight decline in Tmax, the average temperature (Tavg) continued to rise. The findings confirmed the presence of climate change in Kien Giang, characterised by increasing dry-season rainfall and rising minimum temperatures. These changes emphasized the urgent need for adjustments in water resource management and the development of long-term climate adaptation strategies.
Tóm tắt
Nghiên cứu đánh giá xu thế biến đổi khí hậu tại Kiên Giang dựa trên dữ liệu lượng mưa giai đoạn từ năm 1979 đến 2022 và nhiệt độ từ năm 1992 đến 2022, phân tích theo các thang đo năm, mùa và tháng. Sử dụng phương pháp kiểm định phi tham số gồm: MK, Sen’s Slope, SMK và ITA, kết quả cho thấy tổng lượng mưa, số ngày mưa mùa khô và số ngày mưa trong năm có xu hướng tăng (p ≤ 0,05), trong khi lượng mưa mùa mưa có xu hướng giảm nhẹ nhưng không đáng kể. Lượng mưa trong tháng 1 tăng (p = 0,024), phản ánh tăng lượng mưa vào mùa khô. Nhiệt độ, Tmax có xu hướng giảm nhẹ, trong khi Tmin lại tăng mạnh, đặc biệt tháng đầu năm, phản ánh xu thế ấm lên. Nhiệt độ trung bình (Ttb) vẫn tăng mặc dù giảm nhẹ của Tmax. Kết quả nghiên cứu xác nhận xu hướng biến đổi khí hậu tại Kiên Giang, nổi bậc sự gia tăng lượng mưa mùa khô và nhiệt độ tối thiểu, từ đó nhấn mạnh yêu cầu cấp thiết trong việc quản lý tài nguyên nước và xây dựng chiến lược ứng phó dài hạn.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Asfaw, A., Simane, B., Hassen, A., & Bantider, A. (2018). Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather and Climate Extremes, 19, 29–41. https://doi.org/10.1016/j.wace.2017.12.002
Bui, T. T., & Pham, T. M. (2018). Studying characteristics and the trend in changing rainfall and temperature of Kien Giang Province. Hydrometeorological Journal, 2, 1–12 (in Vietnamese).
Bari, S. H., Rahman, M. T. U., Hoque, M. A., & Hussain, M. M. (2016). Analysis of seasonal and annual rainfall trends in the northern region of Bangladesh. Atmospheric Research, 176, 148–158. https://doi.org/10.1016/j.atmosres.2016.02.008
Caloiero, T., Coscarelli, R., & Ferrari, E. (2018). Application of the innovative trend analysis method for the trend analysis of rainfall anomalies in southern Italy. Water Resources Management, 32, 4971–4983. https://doi.org/10.1007/s11269-018-2117-z
Camera, C., Bruggeman, A., Hadjinicolaou, P., Michaelides, S., & Lange, M. A. (2017). Evaluation of a spatial rainfall generator for generating high resolution precipitation projections over orographically complex terrain. Stochastic Environmental Research and Risk Assessment, 31, 757–773. https://doi.org/10.1007/s00477-016-1239-1
Danh, H. (2020). The natural conditions of Rach Gia city (in Vietnamese). https://rachgia.kiengiang.gov.vn/trang/TinTuc/102/1489/dIEU-KIEN-TU-NHIEN-CUA-THANH-PHO-RACH-GIA.html
Do T. C. (2022). Impact of climate change on urban drainage infrastructure in Rach Gia city, Kien Giang province. Construction Magazine - Ministry of Construction. 3, 84-87(in Vietnamese) https://tapchixaydung.vn/tac-dong-cua-bien-doi-khi-hau-den-ha-tang-thoat-nuoc-do-thi-tai-to-rach-gia-tinh-kien-giang-20201224000010043.html
Dutta, D., Kundu, A., Patel, N., Saha, S., & Siddiqui, A. (2015). Assessment of agricultural drought in Rajasthan (India) using remote sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI). The Egyptian Journal of Remote Sensing and Space Science, 18(1), 53–63. https://doi.org/10.1016/j.ejrs.2015.03.006
Ghalhari, G., Dastjerdi, J., & Nokhandan, M. (2012). Using Mann Kendal and t-test methods in identifying trends of climatic elements: A case study of northern parts of Iran. Management Science Letters, 2(3), 911–920. https://doi.org/10.5267/j.msl.2011.10.015
Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. John Wiley & Sons.
Helsel, D. R., & Hirsch, R. M. (1993). Statistical methods in water resources. Elsevier. https://doi.org/10.3133/tm4A3
Hirsch, R. M., Slack, J. R., & Smith, R. A. (1982). Techniques of trend analysis for monthly water quality data. Water Resources Research, 18(1), 107–121. https://doi.org/10.1029/WR018i001p00107
Kendall, M. G. (1948). Rank correlation methods. Charles Griffin & Company, London.
Kitayama, K., Seto, S., Sato, M., & Hara, H. (2012). Increases of wet deposition at remote sites in Japan from 1991 to 2009. Journal of Atmospheric Chemistry, 69, 33–46. https://doi.org/10.1007/s10874-012-9228-3
Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 13(3), 245–259. https://doi.org/10.2307/1907187
Mondal, A., Kundu, S., & Mukhopadhyay, A. (2012). Rainfall trend analysis by Mann-Kendall test: A case study of north-eastern part of Cuttack district, Orissa. International Journal of Geology, Earth and Environmental Sciences, 2(1), 70–78.
Nguyen, B. V., Tran, T. V., Van, T. P. D., & Tran, H. T. L. (2017). Impacts of saline intrusion on agriculture and aquaculture in the Tran De district, Soc Trang province .Can Tho University Science Magazine, 50, 94–100 (in Vietnamese). https://doi.org/10.22144/jvn.2017.071
Nguyen, T. H., & Van, T. P. Đ (2014). Possible impacts of seawater intrusion and strategies for water management in coastal areas in the Vietnamese Mekong Delta in the context of climate change. In Coastal disasters and climate change in Vietnam (pp. 219–232). https://doi.org/10.1016/B978-0-12-800007-6.00010-1
Oluwatobi, A., & Oluwakemi, O. (2016). Analysis of trend and variability of atmospheric temperature in Ijebu-Ode, Southwest Nigeria. African Journal of Geo-Science Research, 4(2), 09–12. https://doi.org/10.14303/irjas.2016.013
Phan, V. H., Pham, V. T., & Van, T. P. Đ. (2016). Classification of risk zones in agriculture under the impacts of saltwater intrusion in Bac Lieu province. Can Tho University Science Magazine, 42, 70–80 (in Vietnamese).
Sa’adi, Z., Shahid, S., Ismail, T., Chung, E.-S., & Wang, X.-J. (2019). Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test. Meteorology and Atmospheric Physics, 131, 263–277. https://doi.org/10.1007/s00703-017-0564-3
Şen, Z. (2012). Innovative trend analysis methodology. Journal of Hydrologic Engineering, 17(9), 1042–1046. https://doi.org/10.1007/s00703-017-0564-3
Wu, H., & Qian, H. (2017). Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s. International Journal of Climatology, 37(5), 2582–2592.
https://doi.org/ 10.1002/joc.4866