Nghiên cứu sử dụng viên đất sét nung làm vật liệu đệm trong hệ thống lọc sinh học ngập nước xử lý nước thải
Abstract
The study aimed to evaluate the domestic wastewater treatment efficiency of a filtration column using expanded clay as the filter medium. Experiments were conducted on three filtration columns with operational parameters including a particle diameter of 5–10 mm, a flow rate of 7.07 L/h (filtration rate of 0.1 m/h), and water collection at heights of 0.4 m, 0.6 m, and 0.8 m. The results showed that the filter column packed with a thickness of 0.8 m expanded clay treated domestic wastewater to meet the national technical regulation on industrial wastewater QCVN 14:2008/BTNMT (type A), achieving treatment efficiencies for COD, BOD5, P-PO43-, N-NO3-, and N-NH4+ of 83.8%, 84.1%, 42.2%, 74.4%, and 30.4% respectively. Enzyme analysis results indicated that microbial activity was strongest in the upper layers of the material. The treatment efficiency slightly increased when the material layer thickness was increased. This study suggests that expanded clay can be applied as a biofilm carrier in biological filtration systems for wastewater treatment.
Tóm tắt
Nghiên cứu được thực hiện nhằm đánh giá hiệu suất xử lý nước thải sinh hoạt (NTSH) của cột lọc sử dụng viên đất sét nung làm vật liệu đệm. Thí nghiệm được tiến hành trên 03 cột lọc với thông số vận hành như đường kính trung bình hạt 5 - 10 mm, lưu lượng 7,07 L/h (tốc độ lọc 0,1 m/h) và được thu nước tại các chiều cao 0,4 m, 0,6 m và 0,8 m. Kết quả cho thấy cột lọc có độ dày 0,8 m viên đất sét nung xử lý nước thải đạt tiêu chuẩn loại A của QCVN 14:2008/BTNMT. Hiệu suất xử lý COD, BOD5, P-PO43-, N-NO3-, N-NH4+ lần lượt là 83,8%, 84,1%, 42,2%, 74,4%, 30,4%. Kết quả phân tích enzyme cho thấy vi sinh hoạt động mạnh chủ yếu ở lớp vật liệu phía trên. Hiệu suất xử lý tăng không đáng kể khi tăng chiều dày lớp vật liệu. Trong nghiên cứu này, kết quả cho thấy đất sét nung có thể áp dụng làm giá thể sinh học cho hệ thống lọc sinh học để xử lý nước thải.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Albuquerque, A., Oliveira, J., Semitela, S., & Amaral, L. (2009). Influence of bed media characteristics on ammonia and nitrate removal in shallow horizontal subsurface flow constructed wetlands. Bioresource technology, 100(24), 6269-6277. https://doi.org/10.1016/j.biortech.2009.07.016
Ausland, G., Stevik, T. K., Hanssen, J. F., Køhler, J. C., & Jenssen, P. D. (2002). Intermittent filtration of wastewater—Removal of fecal coliforms and fecal streptococci. Water Research, 36(14), 3507–3516. https://doi.org/10.1016/S0043-1354(02)00060-X.
Awad, A.M., Shaikh, S.M.R., Jalab, R., Gulied, M.H., Nasser, M.S., Benamor, A., Adham, S. (2019). Adsorption of organic pollutants by natural and modified clays: a comprehensive review. Sep. Purif. Technol. 228, 115719. https://doi.org/10.1016/j.seppur.2019.115719
Campos, J. L., Mosquera-Corral, A., Sanchez, M., Méndez, R., & Lema, J. M. (2002). Nitrification in saline wastewater with high ammonia concentration in an activated sludge unit. Water Research, 36(10), 2555-2560. https://doi.org/10.1016/S0043-1354(01)00467-5
Crini, Grégorio, and Badot Pierre-Marie (2010). Sorption process and pollution: An introduction. Sorption Process and Pollution, 27-38. Presses Universitaires de Franche-Comté.
Cuadros, J. (2017). Clay minerals interaction with microorganisms: a review. Clay Minerals, 52(2), 235-261. https://doi.org/10.1180/claymin.2017.052.2.05
Dordio, A., Carvalho, A. P., Teixeira, D. M., Dias, C. B., & Pinto, A. P. (2009). Removal of pharmaceuticals in microcosm constructed wetlands using Typha spp. and LECA. Bioresource technology, 101(3), 886-892. https://doi.org/10.1016/j.biortech.2009.09.001
Ewis, Dina, Muneer M. Ba-Abbad, Abdelbaki Benamor, and Muftah H. El-Naas (2022). Adsorption of organic water pollutants by clays and clay minerals composites: A comprehensive review. Applied Clay Science 229 (2022): 106686. https://doi.org/10.1016/j.clay.2022.106686
Kim, L., Ton, M. N. N., Duong, T. T. C., Nguyen, L. T. T., & Nguyen, N. T. C. (2018). Reusing beehive charcoal combustion residue as biofilter media for treatment of household domestic wastewater. HUAF Journal of Agricultural Science and Technology, 2 (2), 693-704. DOI: 10.26459/hueuni-jtt.v127i2A.4747 (in Vietnamese)
Kim, L., Nguyen, T. T., & Pham, T. V. (2023). Using Jmat Plate as Microbial Carrier in Submerged Biological Filter to Treat Domestic Wastewater. Can Tho University Journal of Science, 59, 97–103. https://doi.org/10.22144/ctu.jvn.2023.111 (in Vietnamese)
Le, V. H. & Nguyen, N. C. V. (2016). Wastewater Treatment Engineering (Vol. 1). Can Tho University Publishing House. (in Vietnamese)
Lianfang, Z., Wei, Z., & Wei, T. (2009). Clogging processes caused by biofilm growth and organic particle accumulation in lab-scale vertical flow constructed wetlands. Journal of Environmental Sciences, 21(6), 750-757. DOI: 10.1016/S1001-0742(08)62336-0
Mesquita, M.C.; Albuquerque, A.; Amaral, L.; Nogueira, R. (2013). Effect of vegetation on the performance of horizontal subsurface flow constructed wetlands with lightweight expanded clay aggregates. Int J Environ Sci Technol, 10, 433-442. https://doi.org/10.1007/s13762- 958 012-0119-6
Mlih, R., Bydalek, F., Klumpp, E., Yaghi, N., Bol, R., & Wenk, J. (2020). Light-expanded clay aggregate (LECA) as a substrate in constructed wetlands–A review. Ecological engineering, 148, 105783. https://doi.org/10.1016/j.ecoleng.2020.105783
Naz, I., Saroj, D., Mumtaj, S., Ali, N., & Ahmed, S. (2014). Assessment of biological trickling filter systems with various packing materials for improved wastewater treatment. Environmental Technology. https://doi.org/10.1080/09593330.2014.951400
Nguyen, C. H., Pham, T. N., Pham., T. V., Nguyen, L. X., Tang, N. L. H., Truong, P. T., & Huynh, T. T. T. (2021). Using pyrolytic potential acid sulphate soil to adsorb phosphorus in biogas solution. Can Tho University Journal of Science, 57(1), 24–33. DOI: 10.22144/ctu.jsi.2021.026 (in Vietnamese)
Nguyen, G. T. H., Tran, P. T. C., & Tran, P. V. (2018). Efficiency of domestic wastewater treatment by biological trickling filter. Hue University Journal of Science: Techniques and Technology, 127 (2A), 43-53. https://doi.org/10.26459/hueuni-jtt.v127i2A.4747 (in Vietnamese)
Papciak, D., Domoń, A., & Zdeb, M. (2024). The Influence of the Biofiltration Method on the Efficiency of Ammonium Nitrogen Removal from Water in Combined Sorption and Nitrification Processes. Water, 16(5). https://doi.org/10.3390/w16050722
Sadegh, Hamidreza, Gomaa AM Ali, Abdel Salam Hamdy Makhlouf, Kwok Feng Chong, Njud S. Alharbi, Shilpi Agarwal và Vinod Kumar Gupta (2018). Nanocompozit MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsoption efficiency. Journal of Molecular Liquids, 258, 345-353. https://doi.org/10.1016/j.molliq.2018.03.012
Saeed, T. & Sun, G. (2012). A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. Journal of environmental management, 112, 429-448. https://doi.org/10.1016/j.jenvman.2012.08.011
Uddin, M.K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 308, 438–462. https://doi.org/10.1016/j.cej.2016.09.029
Yadav, V.B., Gadi, R., Kalra, S. (2019). Clay based nanocomposites for removal of heavy metals from water: a review. J. Environ. Manag, 232, 803–817. https://doi.org/10.1016/j.jenvman.2018.11.120