Khảo sát quá trình Fenton dị thể sử dụng hạt nano sắt hóa trị 0 trên nền Graphene oxide dạng khử (rGO/nZVI) để xử lý độ màu trong nước thải dệt nhuộm
Abstract
This study employed the Taguchi method to determine the influence of various factors on the color removal efficiency of textile wastewater. Zero-valent iron nanoparticles (nZVI) and a composite of nZVI on reduced graphene oxide (rGO/nZVI) were used as catalysts in the heterogeneous Fenton reaction. ANOVA analysis revealed that pH was the most significant factor, contributing 55,9% for nZVI and 92,4% for rGO/nZVI. Other factors, such as catalyst dosage and H₂O₂ concentration, also had an impact but to a lesser extent. Using a catalyst dosage of 1000 mg/L, H₂O₂ concentration of 1000 mg/L, pH 3, and a reaction time of 90 minutes, nZVI achieved a color removal efficiency of 84,2% in the first cycle, which dropped to 56,4% after six reuse cycles. Meanwhile, rGO/nZVI achieved an initial efficiency of 96,2% but declined to only 42,1% after six reuse cycles. The results demonstrate that the rGO/nZVI composite enhances color removal efficiency compared to standalone nZVI, although the reusability of the composite material still requires improvement.
Tóm tắt
Nghiên cứu được thực hiện bằng cách sử dụng phương pháp Taguchi để xác định mức độ ảnh hưởng của các yếu tố đến hiệu suất xử lý độ màu của nước thải dệt nhuộm. Vật liệu nano sắt hóa trị 0 (nZVI) và tổ hợp nZVI trên graphene oxide dạng khử (rGO/nZVI) được sử dụng làm xúc tác cho phản ứng Fenton dị thể. Việc phân tích ANOVA cho thấy pH là yếu tố quan trọng nhất, đóng góp 55,9% đối với nZVI và 92,4% đối với rGO/nZVI. Các yếu tố khác như liều lượng vật liệu và H₂O₂ cũng có ảnh hưởng nhưng ít hơn.Với liều lượng vật liệu 1000 mg/L, H₂O₂ 1000 mg/L, pH 3 và thời gian phản ứng 90 phút, khi sử dụng nZVI thu được hiệu quả loại bỏ độ màu 84,2% trong lần đầu tiên và giảm còn 56,4% sau sáu chu kỳ tái sử dụng. Với rGO/nZVI, hiệu suất đạt đến 96,2% trong lần đầu, nhưng giảm chỉ còn 42,1% sau sáu lần tái sử dụng. Kết quả cho thấy tổ hợp rGO/nZVI cải thiện hiệu suất xử lý độ màu so với nZVI đơn lẻ, mặc dù khả năng tái sử dụng của vật liệu tổ hợp vẫn cần cải thiện.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Asghar, A., Abdul Raman, A. A., & Daud, W. M. A. W. (2014). A comparison of central composite design and Taguchi method for optimizing Fenton process. The Scientific World Journal, (1), 869120.
https://doi.org/10.1155/2014/869120
Bai, Z., Yang, Q., & Wang, J. (2017). Degradation of sulfamethazine antibiotics in Fenton‐like system using Fe3O4 magnetic nanoparticles as catalyst. Environmental Progress & Sustainable Energy, 36(6), 1743-1753.
https://doi.org/10.1002/ep.12639
Bellarmin, V. R., Moorthy, A., & Saravanan, M. R. (2022). Rapid Degradation of Methyl Orange by Heterogeneous Fenton Process Using Fewo4 Nanocatalyst Prepared by Wet Chemical Route. Journal of Pharmaceutical Negative Results, 4014-4018.
https://doi.org/10.47750/pnr.2022.13.S08.505
Chaurasia, M., Patel, K., Bhadouria, R., & Rao, K. (2024). Spatial variability in soil physicochemical parameters across land use classes in the peri-urban landscape. Environment, Development and Sustainability, 26(10), 24791-24815.
Chen, H., Zhang, Z., Yang, Z., Yang, Q., Li, B., & Bai, Z. (2015). Heterogeneous fenton-like catalytic degradation of 2, 4-dichlorophenoxyacetic acid in water with FeS. Chemical Engineering Journal, 273, 481-489. https://doi.org/10.1016/j.cej.2015.03.079
Divya, T., & Renuka, N. K. (2015). Modulated heterogeneous Fenton-like activity of ‘M’doped nanoceria systems (M= Cu, Fe, Zr, Dy, La): Influence of reduction potential of doped cations. Journal of Molecular Catalysis A: Chemical, 408, 41-47. https://doi.org/10.1016/j.molcata.2015.07.018
Dos Santos, N. O., Teixeira, L. A., Spadotto, J. C., & Campos, L. C. (2021). A simple ZVI-Fenton pre-oxidation using steel-nails for NOM degradation in water treatment. Journal of Water Process Engineering, 43, 102230. https://doi.org/10.1016/j.jwpe.2021.102230
Duarte, F., Maldonado-Hódar, F., & Madeira, L. M. (2012). Influence of the particle size of activated carbons on their performance as Fe supports for developing Fenton-like catalysts. Industrial & engineering chemistry research, 51(27), 9218-9226.
https://doi.org/10.1021/ie300167r
Dao, D. S., & Do, N. T. H. (2011). Effect of pH, temperature and some metal ions on the removal efficiency of Reactive Blue 161 Ci dye by Fenton reaction. Vietnam Journal of Chemistry, 49(1) (in Vietnamese).
Ertugay, N., & Acar, F. N. (2022). Direct Blue 71 Degradation in the Presence of ZVI and H2O2. Advanced Fenton Process: Determination of Optimum Conditions and Kinetics. Polish Journal of Environmental Studies, 31(5).
https://doi.org/10.15244/pjoes/149446
Ha, T. H. (2014). Synthesis of graphenes and polystyrene/graphene nanocomposites (in Vietnamese).
Haneef, T., Ul Mustafa, M. R., Rasool, K., Ho, Y. C., & Mohamed Kutty, S. R. (2020). Removal of polycyclic aromatic hydrocarbons in a heterogeneous Fenton like oxidation system using nanoscale zero-valent iron as a catalyst. Water, 12(9), 2430. https://doi.org/10.3390/w12092430
Kant, R. (2011). Textile dyeing industry an environmental hazard. https://doi.org/10.4236/ns.2012.41004
Masud, A., Guardian, M. G. E., Travis, S. C., Soria, N. G. C., Jarin, M., Aga, D. S., & Aich, N. (2021). Redox-active rGO-nZVI nanohybrid-catalyzed chain shortening of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). Journal of Hazardous Materials Letters, 2, 100007.
https://doi.org/10.1016/j.hazl.2020.100007
Mijangos, F., Varona, F., & Villota, N. (2006). Changes in solution color during phenol oxidation by Fenton reagent. Environmental Science & Technology, 40(17), 5538-5543. https://doi.org/10.1021/es060866q
Morshed, M. N., Bouazizi, N., Behary, N., Guan, J., & Nierstrasz, V. (2019). Stabilization of zero valent iron (Fe0) on plasma/dendrimer functionalized polyester fabrics for Fenton-like removal of hazardous water pollutants. Chemical Engineering Journal, 374, 658-673. https://doi.org/10.1016/j.cej.2019.05.162
Morshed, M. N., Pervez, M. N., Behary, N., Bouazizi, N., Guan, J., & Nierstrasz, V. A. (2020). Statistical modeling and optimization of heterogeneous Fenton-like removal of organic pollutant using fibrous catalysts: A full factorial design. Scientific Reports, 10(1), 16133. https://doi.org/10.1038/s41598-020-72401-z
Naderpour, H., Noroozifar, M., & Khorasani-Motlagh, M. (2013). Photodegradation of methyl orange catalyzed by nanoscale zerovalent iron particles supported on natural zeolite. Journal of the Iranian Chemical Society, 10, 471-479. https://doi.org/10.1007/s13738-012-0181-5
Plaza, J., Arencibia, A., & López-Muñoz, M. J. (2021). Evaluation of nZVI for the degradation of atrazine in heterogeneous Fenton-like systems at circumneutral pH. Journal of Environmental Chemical Engineering, 9(6), 106641. https://doi.org/10.1016/j.jece.2021.106641
Rashtbari, Y., Hazrati, S., Azari, A., Afshin, S., Fazlzadeh, M., & Vosoughi, M. (2020). A novel, eco-friendly and green synthesis of PPAC-ZnO and PPAC-nZVI nanocomposite using pomegranate peel: Cephalexin adsorption experiments, mechanisms, isotherms and kinetics. Advanced Powder Technology, 31(4), 1612-1623. https://doi.org/10.1016/j.apt.2020.02.001
Taguchi, G. (1987). System of experimental design; engineering methods to optimize quality and minimize costs.
Tekbaş, M., Yatmaz, H. C., & Bektaş, N. (2008). Heterogeneous photo-Fenton oxidation of reactive azo dye solutions using iron exchanged zeolite as a catalyst. Microporous and Mesoporous Materials, 115(3), 594-602. https://doi.org/10.1016/j.micromeso.2008.03.001
Wang, C., Luo, H., Zhang, Z., Wu, Y., Zhang, J., & Chen, S. (2014). Removal of As (III) and As (V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. Journal of Hazardous materials, 268, 124-131. https://doi.org/10.1016/j.jhazmat.2014.01.009
Wei, F., Shahid, M. J., Alnusairi, G. S., Afzal, M., Khan, A., El-Esawi, M. A., Abbas, Z., Wei, K., Zaheer, I. E., & Rizwan, M. (2020). Implementation of floating treatment wetlands for textile wastewater management: A review. Sustainability, 12(14), 5801. https://doi.org/10.3390/su12145801
Xiong, X., Sun, Y., Sun, B., Song, W., Sun, J., Gao, N., Qiao, J., & Guan, X. (2015). Enhancement of the advanced Fenton process by weak magnetic field for the degradation of 4-nitrophenol. RSC advances, 5(18), 13357-13365. https://doi.org/10.1039/C4RA16318D
Yang, B., Tian, Z., Zhang, L., Guo, Y., & Yan, S. (2015). Enhanced heterogeneous Fenton degradation of Methylene Blue by nanoscale zero valent iron (nZVI) assembled on magnetic Fe3O4/reduced graphene oxide. Journal of Water Process Engineering, 5, 101-111. https://doi.org/10.1016/j.jwpe.2015.01.006
Yao, L., Zhuang, L., Yao, Z., Han, L., & Han, C. (2016). High-yield preparation of rod-like CaSO4/Fe0 magnetic composite for effective removal of Cu2+ in wastewater. Journal of the Iranian Chemical Society, 13, 2185-2191. https://doi.org/10.1007/s13738-016-0936-5
Zhou, Y., Yu, M., Zhang, Q., Sun, X., & Niu, J. (2022). Regulating electron distribution of Fe/Ni-N4P2 single sites for efficient photo-Fenton process. Journal of hazardous materials, 440, 129724.
https://doi.org/10.1016/j.jhazmat.2022.129724
Zhu, F., Li, L., Ren, W., Deng, X., & Liu, T. (2017). Effect of pH, temperature, humic acid and coexisting anions on reduction of Cr (Ⅵ) in the soil leachate by nZVI/Ni bimetal material. Environmental pollution, 227, 444-450. https://doi.org/10.1016/j.envpol.2017.04.074