Phạm Văn Toàn * , Lê Minh Thuận , Trang Thái Nguyên Trần Minh Viên

* Tác giả liên hệ (pvtoan@ctu.edu.vn)

Abstract

Air pollution caused by SO2 emissions from industrial activities is a major concern, significantly impacting human health and the environment. This study evaluates the efficiency of SO₂ removal using a wet scrubber, focusing on three key factors: packing layer height, the ratio of gas-liquid (L/G), and the type of absorption solution. The experiments were conducted under controlled conditions, with a gas stream temperature of 40 ± 1°C, pressure of 1 atm, and a specified inlet SO₂ concentration. The experiment results showed that the highest SO₂ removal efficiency (85.01 ± 1.19%) was achieved with a packing layer height of 0.7 m, an L/G ratio of 0.009, and a 0.05M NaOH solution. Findings indicate that these factors significantly affect SO₂ removal efficiency. To improve the technology of SO₂ removal from air pollution sources by the wet scrubber, further research conducted on other factors, such as packing material types, gas stream temperature, and pressure are necessary.

Keywords: Absorption, absorbent solution, L/G ratio, SO2 gas, wet scrubber

Tóm tắt

Ô nhiễm không khí do khí SO2 từ công nghiệp đang là vấn đề được quan tâm, gây ảnh hưởng nghiêm trọng đến sức khỏe và môi trường. Nghiên cứu này được tiến hành nhằm đánh giá hiệu quả xử lý khí SO2 bằng tháp đệm, tập trung vào ba yếu tố gồm chiều cao lớp vật liệu đệm, tỷ lệ khí - lỏng (L/G) và loại dung dịch hấp thụ. Thí nghiệm được thực hiện trong điều kiện có kiểm soát với nhiệt độ dòng khí 40 ± 1oC, áp suất 1 atm và nồng độ khí SO2 đầu vào. Kết quả nghiên cứu cho thấy hiệu suất xử lý SO2 cao nhất đạt 85,01 ± 1,19% ứng với trường hợp lớp vật liệu đệm dày 0,7 m, tỷ lệ L/G 0,009 và dung dịch NaOH 0,05M. Điều này chứng tỏ ba yếu tố trên ảnh hưởng đáng kể đến hiệu quả xử lý khí SO2. Để cải thiện công nghệ xử lý khí SO2 bằng tháp hấp thụ, việc nghiên cứu ảnh hưởng của các yếu tố khác như loại vật liệu đệm, nhiệt độ và áp suất dòng khí được thực hiện là rất cần thiết.

Từ khóa: Dung dịch hấp thụ, hấp thụ, khí SO2, tháp đệm, tỷ lệ L/G

Article Details

Tài liệu tham khảo

Arunkumar, R., & Shyamala, K. (2015). Analysis of air pollutant levels using artificial neural network in Chennai city. International Journal of Scientific Research in Science, Engineering and Technology, 1(4), 361-367.

Chmielewski, A. G., Ostapczuk, A., & Licki, J. (2010). Electron beam technology for multipollutant emissions control from heavy fuel oil-fired boiler. Journal of the Air & Waste Management Association, 60(8), 932-938. https://doi.org/10.3155/1047-3289.60.8.932

Cirera, L., Rodríguez, M., Giménez, J., Jiménez, E., Saez, M., Guillén, J. J., & Navarro, C. (2009). Effects of public health interventions on industrial emissions and ambient air in Cartagena, Spain. Environmental Science and Pollution Research, 16, 152-161. https://doi.org/10.1007/s11356-008-0091-3

Ghosh, D., Biswas, D., & Datta, A. (2024). Absorption height in spray tower for wet-limestone process in flue gas desulphurization. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2024.02.001

Hasanbeigi, A., Khanna, N., & Price, L. (2017). Air pollutant emissions projections for the cement and steel industry in China and the impact of emissions control technologies. Energy Analysis and Environmental Impacts Division. Lawrence Berkeley National Laboratory. China Energy Group. 47 pp.
https://doi.org/10.2172/1372903

Jayadi, H., Hendrarinata, F., Suyanto, B., & Sunaryo, S. (2021). Chimney filter model wet scrubber to reduce air pollutant emissions on the incinerator. Health Notions, 5(2), 41-45. https://doi.org/10.33846/hn50201

Krzyzynska, R., & Hutson, N. D. (2012). Effect of solution pH on SO2, NOx, and Hg removal from simulated coal combustion flue gas in an oxidant-enhanced wet scrubber. Journal of the Air & Waste Management Association, 62(2), 212-220. https://doi.org/10.1080/10473289.2011.642951

Likus-Cieślik, J., & Pietrzykowski, M. (2021). Sulfur Contamination and Environmental Effects: A Case Study of Current SO Industrial Emission by Biomonitoring and Regional Post-mining hot-spots. The Open Biotechnology Journal, 15(1), 82-96. https://doi.org/10.2174/1874070702115010082

Lou, L., Li, J., & Zhong, S. (2021). Sulfur dioxide (SO2) emission reduction and its spatial spillover effect in high-tech industries: Based on panel data from 30 provinces in China. Environmental Science and Pollution Research, 28, 31340-31357.
https://doi.org/10.1007/s11356-021-12755-7

Nguyen V. P., Ho, Q. B., Vu, H. N. K., Nguyen, T. T., Le, Q., Rakholia, R., & Carbajo, R. S. (2022). Impacts of air pollution on public health in Ho Chi Minh city and develop mitigation measures. Vietnam Journal online: Environmental Magazine, 01/2022, 44-50 (in Vietnamese).

Park, H.W., Choi, S., & Park, D.W. (2015). Simultaneous treatment of NO and SO2 with aqueous NaClO2 solution in a wet scrubber combined with a plasma electrostatic precipitator. Journal of hazardous materials, 285, 117-126. https://doi.org/10.1016/j.jhazmat.2014.11.040

Pham, D. T. (2007). Filtering smoke from the FO oil furnace using a limestone cushion tower. Labor Protection Journal, 6/2007, 15-18 (in Vietnamese).

Pham, T. T. H., & Nguyen, B. (2013). Optimizing the treatment process for SO2 in the waste gas from incinerators by experimental planning method. Journal of Science and Technology and Technical Universities, 92, 152-156 (in Vietnamese).

Skinder, B. M., Sheikh, A. Q., Pandit, A. K., & Ganai, B. A. (2014). Brick kiln emissions and its environmental impact: A Review. Journal of Ecology and Natural Environment, 6(1), 1-11. https://doi.org/10.5897/JENE2013.0423

Sun, J., Li, L., Zhou, G., Wang, X., Zhang, L., Liu, Y., & Jiang, F. (2018). Biological sulfur reduction to generate H2S as a reducing agent to achieve simultaneous catalytic removal of SO2 and NO and sulfur recovery from flue gas. Environmental Science & Technology, 52(8), 4754-4762. https://doi.org/10.1021/acs.est.7b06551

Veseli, B., & Kristo, I. (2015). Air Pollution in Urban and Suburban Areas in Kosovo. Anglisticum. Journal of the Association-Institute for English Language and American Studies, 4(4), 87-89.

Zhao, M., Xue, P., Liu, J., Liao, J., & Guo, J. (2021). A review of removing SO2 and NOX by wet scrubbing. Sustainable Energy Technologies and Assessments, 47, 101451. https://doi.org/10.1016/j.seta.2021.101451

Zhu, J., Ye, S. C., Bai, J., Wu, Z. Y., Liu, Z. H., & Yang, Y. F. (2015). A concise algorithm for calculating absorption height in spray tower for wet limestone–gypsum flue gas desulfurization. Fuel processing technology, 129, 15-23. https://doi.org/10.1016/j.fuproc.2014.07.002

Zvereva, E. L., Toivonen, E., & Kozlov, M. V. (2008). Changes in species richness of vascular plants under the impact of air pollution: a global perspective. Global Ecology and Biogeography, 17(3), 305-319. https://doi.org/10.1111/j.1466-8238.2007.00366.x

Wang, Z., Peng, Y., Ren, X., Gui, S., & Zhang, G. (2015). Absorption of sulfur dioxide with sodium hydroxide solution in spray columns. Industrial & Engineering Chemistry Research, 54(35), 8670-8677. https://doi.org/10.1021/acs.iecr.5b02146