Phan Thị Thanh Tuyền , Nguyễn Thị Mỹ Tâm , Lâm Bá Lộc , Bùi Thị Như Ý , Lăng Hiệp Phong , Nguyễn Xuân Lộc Đỗ Thị Mỹ Phượng *

* Tác giả liên hệ (dtmphuong@ctu.edu.vn)

Abstract

This study investigates the adsorption capacity of lead ions (Pb) on two types of TiO2 nanomaterials, synthesized from the extracts of Phyllanthus urinaria (Phyllanthus urinaria) and lemongrass (Cymbopogon citratus) with Titanium isopropoxide using the sol-gel method. The experimental results show that TiO2@Cymbopogon citratus has better adsorption performance at pH 6, with an adsorption time of 120 minutes, a dosage of 0.01 g, and a Pb concentration of 50 mg/L. The adsorption kinetics follow the second-order and Elovich models. Adsorption process of TiO2@Cymbopogon citratus follows the Langmuir isotherm model (single-layer adsorption), while TiO2@Phyllanthus urinaria follows the Freundlich isotherm model (multi-layer adsorption). Moreover, the maximum adsorption capacity (qmax) of TiO2@Cymbopogon citratus (qmax = 467 mg/g) is higher than that of TiO2@Phyllanthus urinaria (qmax = 362.7 mg/g). The study concludes that plant-extracted combined with TiO2 are effective adsorbents for removing Pb in aqueous solution.

Keywords: Cymbopogon citratus, Pb, Phyllanthus urinaria, TiO2

Tóm tắt

Nghiên cứu được thực hiện nhằm đánh giá khả năng hấp phụ ion chì (Pb) của hai loại vật liệu nano TiO2, được tổng hợp từ dịch chiết của lá diệp hạ châu (Phyllanthus urinaria) và lá sả (Cymbopogon citratus) với Titanium isopropoxide bằng phương pháp sol-gel. Kết quả thí nghiệm cho thấy TiO2@Cymbopogon citratus hấp phụ tốt hơn ở pH 6, với thời gian hấp phụ 120 phút, liều lượng 0,01 g và nồng độ Pb 50 mg/L. Động học hấp phụ phù hợp với mô hình bậc hai và Elovich. Quá trình hấp phụ của TiO2@Cymbopogon citratus tuân theo mô hình đẳng nhiệt Langmuir (hấp phụ đơn lớp), trong khi TiO2@Phyllanthus urinaria theo mô hình Freundlich (hấp phụ đa lớp). Bên cạnh đó, khả năng hấp phụ tối đa (qmax) của TiO2@Cymbopogon citratus (qmax = 467 mg/g) cao hơn so với TiO2@Phyllanthus urinaria (qmax = 362,7 mg/g). Kết quả nghiên cứu cho thấy dịch chiết từ thực vật kết hợp với TiO2 là chất hấp phụ hiệu quả trong việc loại bỏ Pb trong môi trường nước.

 

Từ khóa: Lá sả, lá diệp hạ châu, Pb, TiO2

Article Details

Tài liệu tham khảo

Ahmad, W., Jaiswal, K. K., & Soni, S. (2020). Green synthesis of titanium dioxide (TiO2) nanoparticles by using Mentha arvensis leaves extract and its antimicrobial properties. Inorganic and Nano-Metal Chemistry, 50(10), 1032-1038. doi.org/10.1080/24701556.2020.1732419

Collin, M. S., Venkatraman, S. K., Vijayakumar, N., Kanimozhi, V., Arbaaz, S. M., Stacey, R. S., Anusha, J., Choudhary, R., Lvov, V., & Tovar, G. I. (2022). Bioaccumulation of lead (Pb) and its effects on human: A review. Journal of Hazardous Materials Advances, 7, 100094. https://doi.org/10.1016/j.hazadv.2022.100094

Edwards, M. (2014). Fetal death and reduced birth rates associated with exposure to lead-contaminated drinking water. Environmental science & technology, 48(1), 739-746. https://pubs.acs.org/doi/full/10.1021/es4034952

El-Ashtoukhy, E. S., Amin, N. K., & Abdelwahab, O. (2008). Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent. Desalination, 223(1-3), 162-173. doi.org/10.1016/j.desal.2007.01.206

Erdem, E., Karapinar, N., & Donat, R. (2004). The removal of heavy metal cations by natural zeolites. Journal of colloid and interface science, 280(2), 309-314. doi.org/10.1016/j.jcis.2004.08.028

Farah, M.J., Hasina, M.T., Moniruzzaman, M., Sirajul, H., & Mohammad, E.H. (2021). Removal os lead aqueous solutions and wastewater using water hyacinth (Eichhornia crassipes) roots. Water Practice & Technology 16(2).
https://doi.org/10.2166/wpt.2021.005

Freundlich, H. (1907). Über die adsorption in lösungen. Zeitschrift für physikalische Chemie, 57(1), 385-470. https://doi.org/10.1515/zpch-1907-5723

Izvle, N., & Trave, K. L. (2020). Improvement of titanium dioxide nanoparticle synthesis with green chemistry methods using lemongrass (Cymbopogon citratus) extract. Materiali in tehnologije, 54(6), 755-759. https://doi.org/10.17222/mit.2019.200

Khambhaty, Y., Mody, K., Basha, S., & Jha, B. (2009). Biosorption of Cr (VI) onto marine Aspergillus niger: experimental studies and pseudo-second order kinetics. World Journal of Microbiology and Biotechnology, 25, 1413-1421.

Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society, 40(9), 1361-1403. https://doi.org/10.1021/ja02242a004

Musah, M., Yisa, J., Suleiman, M. T., Abdullahi, M., & Shaba, E. Y. (2018). Study of isotherm models for the adsorption of Cr (VI) ion from aqueous solution onto Bombax buonopozense calyx activated carbon. Lapai Journal of Science and Technology, 4(1),22-32.

Naiya, T. K., Bhattacharya, A. K., Mandal, S., & Das, S. K. (2009). The sorption of lead (II) ions on rice husk ash. Journal of hazardous materials, 163(2-3), 1254-1264. https://doi.org/10.1016/j.jhazmat.2008.07.119

Nguyen, D. Q., Chen, C. Y., & Lin, Y. P. (2018). A new scenario of lead contamination in potable water distribution systems: Galvanic corrosion between lead and stainless steel. Science of the Total Environment, 637, 1423-1431.
Doi: 10.1016/j.scitotenv.2018.05.114

Nguyen, T. N., & Nguyen, T. K. T. (2008). Study on the ability to separate Pb2+ in water using metallic iron nano. VNU Journal of Science: Natural Sciences and Technology, 24(4) (in Vietnamese).

Oladeji, O. S., Adelowo, F. E., Ayodele, D. T., & Odelade, K. A. (2019). Phytochemistry and pharmacological activities of Cymbopogon citratus: A review. Scientific African, 6, e00137. https://doi.org/10.1016/j.sciaf.2019.e00137

Pang, Y. L, Tan, J. H., Lim, S. & Chong, W.C. (2021). A State-of-the-Art Review on Biowaste Derived Chitosan Biomaterials for Biosorption of Organic Dyes: Parameter Studies, Kinetics, Isotherms and Thermodynamics. Polymers, 13(17), 3009.
https://doi.org/10.3390/polym13173009

Panneerselvam, A., Velayutham, J., & Ramasamy, S. (2021). Green synthesis of TiO2 nanoparticles prepared from Phyllanthus niruri leaf extract for dye adsorption and their isotherm and kinetic studies. IET nanobiotechnology, 15(2), 164-172.
https://doi.org/10.1049/nbt2.12033

Tran, D. K., Vu, H. G., Trinh, T. P. H., Vu, T. L., Nguyen, T. L., Dao, T. T. T., Le Tuan, A., Pham, T. D., Nguyen, T. M. C., & Le, T. H. O. (2021). Research on the Coating Method of TiO2 Nanotubes on Quartz Tubes and Investigate the Ethanol Degradation. VNU Journal of Science: Natural Sciences and Technology, 37(4), 94-103.

Wang, Y., Wang, H., Peng, H., Wang, Z., Wu, J., & Liu, Z. (2018). Dye adsorption from aqueous solution by cellulose/chitosan composite: Equilibrium, kinetics, and thermodynamics. Fibers and Polymers, 19, 340-349.
Doi: 10.1007/s12221-018-7520-9

Xiaofu, W., Fang, Z., Mingli, C., Yangli, Z., Chong, Z., & Hailan, Z. (2008). Factors affecting the adsorption of Zn2+ and Cd2+ ions from aqueous solution onto vermiculite. Adsorption Science & Technology, 26(3), 145-155. https://doi.org/10.1260/026361708786036115

Yang, Z., Zhou, Z. W., Guo, H., Yao, Z., Ma, X. H., Song, X., Feng S. P. & Tang, C. Y. (2018). Tannic acid/Fe3+ nanoscaffold for interfacial polymerization: toward enhanced nanofiltration performance. Environmental Science & Technology, 52(16), 9341-9349. https://pubs.acs.org/doi/abs/10.1021/acs.est.8b02425

Zhang, J., Zhou, Q., & Ou, L. (2012). Kinetic, isotherm, and thermodynamic studies of the adsorption of methyl orange from aqueous solution by chitosan/alumina composite. Journal of Chemical & Engineering Data, 57(2), 412-419.
https://pubs.acs.org/doi/abs/10.1021/je2009945

Zhang, Z., Wang, T., Zhang, H., Liu, Y., & Xing, B. (2021). Adsorption of Pb (II) and Cd (II) by magnetic activated carbon and its mechanism. Science of the Total Environment, 757, 143910.
https://doi.org/10.1016/j.scitotenv.2020.143910

Khambhaty, Y., Mody, K., Basha, S., & Jha, B. (2009). Biosorption of Cr (VI) onto marine Aspergillus niger: experimental studies and pseudo-second order kinetics. World Journal of Microbiology and Biotechnology, 25, 1413-1421.