Võ Thị Phương Thảo Ngô Thụy Diễm Trang *

* Tác giả liên hệ (ntdtrang@ctu.edu.vn)

Abstract

This study was carried out to determine the pollution reduction ability of five ornamental species, including Cyperus alternifolius, Echinodorus cordifolius, Canna generalis, Heliconia psittacorum, Ruellia brittoniana, and unplanted (as control treatment). The plants were grown on the floating rafts at density of 27 plants/m2 for municipal wastewater treatment and were arranged in a completely randomized design with three replications each. The plants contribute to reducing nitrogen (N), phosphorus (P), chemical oxygen demand (COD) and to improving dissolved oxygen (DO) conditions in treated water after 7 days of treatment. However, the DO and COD content still did not meet the limit of QCVN 08:2023/BTNMT). The plants accumulated an additional 6.68 > 4.46 > 4.26 > 2.93 > 1.78 g N/tank (for C. generalis > C. alternifolius > E. cordifolius > R. brittoniana > H. psittacorum); and 0.21 > 0.20 > 0.18 > 0.10 > 0.07 g P/tank (for C. generalis > R. brittoniana > C. alternifolius > E. cordifolius > H. psittacorum). The five studied ornamental plants contribute to removing an average of 7.0-11.8% N and 4.0-9.3% P in the treatment system. C. generalis and C. alternifolius grow and develop well, helping to remove N and P in the treatment system, so they are the most potential and suitable species to grow on floating rafts to help improve water quality and create urban landscapes.

Keywords: Constructed floating wetlands, municipal wastewater, ornamental plants, pollution removal efficiency

Tóm tắt

Nghiên cứu được thực hiện nhằm đánh giá khả năng làm giảm chất ô nhiễm của năm loài hoa kiểng gồm thủy trúc (Cyperus alternifolius), bách thủy tiên (Echinodorus cordifolius),chuối hoa (Canna generalis), chuối mỏ két (Heliconia psittacorum),chiều tím (Ruellia brittoniana) và không trồng cây (đối chứng).Cây được trồng trên bè nổi ở mật độ 27 cây/m2 để xử lý nước thải đô thị và được bố trí hoàn toàn ngẫu nhiên với 3 lần lặp lại. Cây góp phần làm giảm đạm (N),lân (P), nhu cầu oxy hóa học (COD) và cải thiện điều kiện oxy (DO) trong nước sau 7 ngày xử lý, nhưng DO và COD vẫn chưa đạt QCVN 08:2023/BTNMT). Cây đã giúp tích lũy thêm 6,68 > 4,46 > 4,26 > 2,93 > 1,78 g N/bể (tương ứng chuối hoa > thủy trúc > bách thủy tiên > chiều tím > chuối mỏ két) và 0,21 > 0,20 > 0,18 > 0,10 > 0,07 g P/bể (tương ứng chuối hoa > chiều tím > thủy trúc > bách thủy tiên > chuối mỏ két). Năm loài hoa kiểng nghiên cứu đóng góp loại bỏ trung bình 7,0-11,8% N và 4,0-9,3% P trong hệ thống xử lý. Chuối hoa và thủy trúc tăng trưởng và phát triển tốt giúp loại bỏ N, P trong hệ thống vì thế chúng là những loài tiềm năng và phù hợp nhất để trồng trên bè nổi giúp cải thiện chất lượng nước kết hợp tạo cảnh quan đô thị.

Từ khóa: Bè nổi, cây hoa kiểng, hiệu suất xử lý ô nhiễm, nước thải đô thị

Article Details

Tài liệu tham khảo

American Public Health Association (APHA), American Water Works Association (AWWA), Water Control Federation (WCF) (1998). Standard methods for the examination of water and wastewater, 20th ed. Washington D.C., USA.

Billore, S. K., Singh, N., Sharma, J. K., Dass, P., & Nelson, R. M. (1999). Horizontal subsurface flow gravel bed constructed wetl & with Phragmites Karka in Central India. Water Science & Technology, 40(3), 163-171. https://doi.org/10.2166/wst.1999.0158

Boyd, C. E. (1998). Water quality for pond aquaculture. Reserch and development series. No. 43. International center for aquaculture and aquatic environments Alabama quaculture experient station Auburn University.

Brix, H. (1997). Do macrophytes play a role in constructed wetlands?. Water Science & Technology, 35, 11-17. https://doi.org/10.2166/wst.1997.0154

Brix, H. (2003). Plant used in constructed wetland and their function. The 1st International Seminar on “The Use of Aquatic Macrophyles for Wastewater Treatment in Constructed Wetland”. Hosted by ICN and INAG, Portugal, 81-02.

Dang, B. D., & Nguyen, H. V. (2006). Notebook of Environmental Chemistry. Hanoi Science and Technology Publishing House (in Vietnamese).

Dao, N. H., Lam, K. C., Lam, N. N. N., Vo, T. T. P., Tran, T. T. H., Nguyen, M. T. D., Truong, P. C., & Ngo, T. T. D. (2023). Study on ability of municipal wastewater treatment of Canna generalis and Echinodorus cordifolius. Science and Technology Journal of Agriculture and Rural Development, 445, 78-86 (in Vietnamese).

Ertel, J., Ampomah, B., Cross, K., & Sridhar, A. (eds.). (2019). Nature for water: A series of utility spotlights. IWA publishing. eISBN: 9781789060829.

Nguyen, T. G. (2020). Evaluating surface water quality in Ninh Kieu district, Can Tho city, Vietnam. J. Appl. Sci. Environ. Manage, 24 (9), 1599-1606. https://doi.org/10.4314/jasem.v24i9.18

Hoang, T. T. (2010). Study on domestic wastewater treatment using planted subsurface horixontal flow constructed wetlands. Scientific research of the College of Environment. Hai Phong Private University.

Kadlec, R. H., & Knight, R. L. (1996). Treatment Wetland. Lewis Publishers. Boca Raton, FL.

Kadlec, R. H., & Wallace, S. D. (2009). Treatment wetlands. CRC Press. https://doi.org/10.1201/9781420012514

Konnerup, D., Koottatep, T., & Brix, H. (2008). Treatment of domestic wastewater in tropical, subsurface flow constructed wetlands planted with Canna and Heliconia. Ecological engineering, 35, 248-257. https://doi.org/10.1016/j.ecoleng.2008.04.018

Konnerup, D., Trang, N. T. D., & Brix, H. (2011). Treatment of fishpond water by recirculating horizontal and vertical flow constructed wetlands in the tropics. Aquaculture, 313, 57-64. https://doi.org/10.1016/j.aquaculture.2010.12.026

Lam, N. T. M., & Ngo, T. T. D. (2013). The role of Typha orientalis in constructed wetlands for treatment close-recirculated intensive catfish culture. Can Tho University Journal of Science, 29A, 31-36 (in Vietnamese).

Le, L. T. (2013). Ability to treat phosphorus in domestic wastewater of a constructed wetland system planted with vetiver grass (Vetiveria zizanioides) (Master's thesis). Can Tho University (in Vietnamese).

Le, V. H., & Nguyen, N. V. C. (2022). Study on the treatment of domestic wastewater using the constructed wetland with creeping burhead (Echinodorus cordifolius L.). Can Tho University Journal of Science, 6A(58), 59-67 (in Vietnamese). DOI:10.22144/ctu.jvn.2022.244 https://doi.org/10.22144/ctu.jvn.2022.244

Le, V. H., Le, L. T. C., Cao, N. T. K. & Nguyen, N. V. C. (2017). The use of constructed wetland for domestic wastewater treatment and creating landscape. Ho Chi Minh city University of educationjournal ofscience, 3(14), 162-175 (in Vietnamese).

Mitsch, W. J., & Gosselink, J. G. (2000). Jonh Wiley & Sons, New York. Wetlands (third edition). No. of pages: 920.

Nelson, S., Yonge, D., & Barber, M. (2009). Effects of road salts on heavy metal mobility in two eastern Washington soils. J. Environ. Eng., 135(7), 505-510. https://doi.org/10.1061/(ASCE)0733-9372(2009)135:7(505)

Neumann, L., Moglia, M., Cook, S., Nguyen, M., Sharma, A., Trung, N., & Nguyen, B. (2013). Water use, sanitation and health in a fragmented urban water system: Case study and household survey. Urban Water Journal, 11, 198-210. https://doi.org/10.1080/1573062X.2013.768685

Ngo, T. T. D., & Hans, B. (2012). Efficiency of sand-based constructed wetlands in domestic wastewater treatment under high hydraulic loading rates. Can Tho University Journal of Science, 21b, 161-171 (in Vietnamese).

Nguyen, B. (1977). Plant morphology, Volume 1. University and Professional High School Publishing House. Ha Noi (in Vietnamese).

Nguyen, C. K. (2002). Notebook of environment and environmental protection. Ho Chi Minh City University of Technology Publishing House. Ho Chi Minh City (in Vietnamese).

Nguyen, L. T., Vo, T. T. C., Nguyen, L. T., Dang, T. C., Phung, H. T. & Nguyen, N. V. C. (2015). Evaluation of treatment efficiency of domestic wastewater by aquatic plants. Can Tho University Journal of Science, Special Issue: Environment and Climate Change, 119-128 (in Vietnamese).

Nhan, N. T. T., & Tuong, L. Q. (2020). Potential of Echinodorus cordifolius and Vallisneria natans in Constructed Wetlands for the removal of Water Pollution from ShrimpFarm Effluent. IOP Conf. Series: Materials Science and Engineering, 991, 1-11. DOI:10.1088/1757-899X/991/1/012034.

Pham, H. K., Nguyen, L. P. H., Do, C. C., & Nguyen, H. M. (2012). Using aquatic system with hyacinth to treat domestic wastewater. Journal of Mining and Earth sciences, 40, 16-22 (in Vietnamese).

Reed, S. C., & Brown, D. (1995). Subsurface flow wetlands - A performance evaluation. Water Environ. Res., 67, 244-248. https://doi.org/10.2175/106143095X131420

Sawaittayothin, V., & Polprasert, C. (2006). Kinetic and mass balance analysis of constructed wetlands treating landfill leachate. Environ Technol, 27(12), 1303-1308. doi: 10.1080/09593332708618750

Sebacher, D. I., Harriss, R. C., & Bartlett, K. B. (1985). Methane Emissions to the Atmosphere Through Aquatic Plants. Journal of Environmental Quality, 14, 40-46. https://doi.org/10.2134/jeq1985.00472425001400010008x

Shahid, M. J., Tahseen, R., Siddique, M., Ali, S., Iqbal, S. & Afzal, M. (2018). Remediation of polluted river water by floating treatment wetlands. Water Supply, 19(3), 967-977. https://doi.org/10.2166/ws.2018.154

Somarakis, G., Stagakis, S., & Chrysoulakis, N. (eds.). (2019). Thinknature Nature-based solutions Handbook. Project funded by the EU Horizon 2020 research and innovation programme under grant agreement No. 730338. DOI:10.26225/jerv-w202.

Tanner, C. C., Kadlec, R. H., Gibbs, M. M., Sukizs, J. P. S., & Nguyen, M. L. (2002). Nitrogen processing gradients in subsurface-flow treatment wetlands – influence of wastewzter characteristics. Ecological Engineering, 18(4), 499-520.
https://doi.org/10.1016/S0925-8574(02)00011-3

Thai, A. V., & Le, C. T. C. (2016). Study on the possibility of treating domestic wastewater using constructed wetlands planting reeds, cattail and vetiver. Ho Chi Minh City University of Food Industry (in Vietnamese).

Tran, N. S., Vo, T. T. P., Truong, M. H. H., Nguyen, D. T. N., Nguyen, A. Q., Tran, L. T. K., Nguyen, S. T., Tran, N. T. H., Ho, L. T., Nguyen, T. P., & Ngo, T. T. D. (2022). Assessing surface water quality in Bung Xang canal Ninh Kieu district, Can Tho city. Science and Technology Journal of Agriculture & Rural Development, 440, 92-99 (in Vietnamese).

Tran, T. T. N., Vo, T. T. P., Truong, T. M., Nguyen, N. T. B., Nguyen, D. T., Phan, N. V., Tran, B. H. T., Tran, L. L. M. & Ngo, T. T. D. (2024). Growth and total inorganic nitrogen and phosphorus removal efficiency of three canna varieties planted in municipal wastewater. Science and Technology Journal of Agriculture & Rural Development, 485, 84-94 (in Vietnamese).

Ngo, T. D. T., Liang, J. B., Yaziz, M. I., & Liao, X. D. (2004). Efficiency of selected local plants for livestock wastewater treatment in constructed wetlands. In Proceeding KUSTEM 3rd Annual Seminar on Sustainability Science and Management, 4th-5th May 2004. Theme Role of Environmental Science and Technology in Sustainable Development of Resources. Terengganu, Malaysia, pp. 207-210.

Xiao, H., Jia, J., Chu, Q., & Liu, L. (2021). Effect of river ecological restoration by symbiotic system of aquatic plants. IOP Conf. Ser.: Earth Environ. Sci., 621(1) 012086. DOI 10.1088/1755-1315/621/1/012086.

Zhang, Z., Rengel, Z., & Meney, K. (2008). Interactive effects of N and P on growth but not on resource allocation of Canna indica in wetland microcosms. Aquatic Botany, 89(3), 317-323. doi: https://doi.org/10.1016/j.aquabot.2008.03.007