Nguyễn Thị Bích Yên * Phạm Văn Hội

* Tác giả liên hệ (ntbyen@vnua.edu.vn)

Abstract

This study applies the Life Cycle Assessment method to analyze the greenhouse gas (GHG) emissions of three cabbage farming models: conventional, VietGap, and organic in suburban Hanoi. Data were collected from 182 conventional farms, 50 VietGap farms, and 49 organic farms. The results showed no significant difference in GHG emissions per unit area between the conventional (5,949 kg CO2-eq/ha) and VietGap (5,930 kg CO2-eq/ha) models, while the organic model emitted 1.5 times less. Emissions per unit of product were also not significantly different among the models. However, GHG emissions per income from product sales in the organic model (5.5 kg CO2-eq/thousand VND) were nearly three times lower than in the conventional and VietGap models. Inorganic fertilizers were the main source of emissions in the conventional and VietGap models, while organic fertilizers and energy use were the primary emission sources in the organic model. Efficient nutrient and energy management practices could help reduce GHG emissions, contributing to sustainable farming practices in Vietnam.

Keywords: Cabbage, greenhouse gases, organic farming, VietGap standards

Tóm tắt

Nghiên cứu này áp dụng phương pháp đánh giá vòng đời sản phẩm để phân tích mức phát thải khí nhà kính (KNK) của ba mô hình canh tác bắp cải: thông thường, VietGap và hữu cơ tại ngoại thành Hà Nội. Kết quả cho thấy mức phát thải KNK trên đơn vị diện tích giữa mô hình thông thường (5.949 kg CO2-eq/ha) và VietGap (5.930 kg CO2-eq/ha) không có sự khác biệt đáng kể, trong khi mô hình hữu cơ phát thải thấp hơn 1,5 lần. Mức phát thải trên khối lượng sản phẩm không khác biệt lớn giữa các mô hình. Tuy nhiên, phát thải KNK trên thu nhập từ sản phẩm của mô hình hữu cơ (5,5 kg CO2-eq/nghìn đồng) thấp hơn gần 3 lần so với mô hình thông thường và VietGap. Phân vô cơ là nguồn phát thải chính trong mô hình thông thường và VietGap, trong khi mô hình hữu cơ chủ yếu phát thải từ phân hữu cơ và sử dụng năng lượng. Các giải pháp sử dụng phân bón và năng lượng hiệu quả có thể giúp giảm phát thải KNK, hướng tới canh tác bền vững ở Việt Nam.

Từ khóa: Bắp cải, canh tác hữu cơ, khí nhà kính, tiêu chuẩn VietGap

Article Details

Tài liệu tham khảo

Arunrat, N., Sereenonchai, S., Chaowiwat, W., Wang, C. & Hatano, R. (2022) Carbon, nitrogen and water footprints of organic rice and conventional rice production over 4 years of cultivation: a case study in the lower north of Thailand. Agronomy, 12(2), 380.
https:// doi. org/ 10. 3390/agronomy12 020380

BSI (British Standards Institute). (2011). The Guide to PAS 2050:2011- How to carbon footprint your products, identify hotspots and reduce emissions in your supply chain. BSI, London

Chiriacò, M. V., Castaldi, S., & Valentini, R. (2022). Determining organic versus conventional food emissions to foster the transition to sustainable food systems and diets: Insights from a systematic review. Journal of Cleaner Production, 380, 134937. https://doi.org/10.1016/j.jclepro.2022.134937

Food and Agriculture Organization of the United Nations [FAO]. (2017). Global database of GHG emissions related to feed crops: A life cycle inventory. Version 1. Livestock Environmental Assessment and Performance Partnership. Rome, Italy, FAO

Ghiglieno, I., Simonetto A., Facciano, L., Tonni, M., Donna, P., Valenti, L., & Gilioli, G. (2023). Comparing the Carbon Footprint of Conventional and Organic Vineyards in Northern Italy. Sustainability, 15(6), 5252. https://doi.org/10.3390/su15065252

Ha, M. T., Shakur, K., & Do, H. P. K. (2019). Consumer concern about food safety in Hanoi, Vietnam. Food Control, 98, 238– 244 https://doi.org/10.1016/j.foodcont.2018.11.031

Hashemi, F., Mogensen, L., van der Werf, H. M. G., Cederberg, C., & Knudsen, M. T. (2024). Organic food has lower environmental impacts per area unit and similar climate impacts per mass unit compared to conventional. Communications Earth and Environment, 5, 250. https://doi.org/10.1038/s43247-024-01415-6

He, X., Qiao, Y., Liu ,Y., Dendler, L., Yin, C., & Martin, F. (2016). Environmental impact assessment of organic and conventional tomato production in urban greenhouses of Beijing city, China. Journal of Cleaner Production. 134, 251-258. https://doi.org/10.1016/j.jclepro.2015.12.004

Hiller, J., Hawe, C., Squire, G., Hilton, A., Wale, S., & Smith, P. (2009). The carbon footprints of foot crop production. International Journal of Agricultural Sustainability, 7(2): 107-118. https://doi.org/10.3763/ijas.2009.0419

Holka, M., Kowalska, J., & Jakubowska, M. 2022. Reducing Carbon Footprint of Agriculture—Can Organic Farming Help to Mitigate Climate Change? Agriculture, 12(9), 1383. https://doi.org/10.3390/agriculture12091383

Hu, Y., Sun J., & Zheng, J. (2021). Comparative analysis of carbon footprint between conventional smallholder operation and innovative largescale farming of urban agriculture in Beijing, China. PeerJ. 9, e11632. https://doi.org/10.7717/peerj.11632

Hung, N. P., Rogers G., & Ampt P. (2022). Factors Influencing N2O Emissions of Major Vegetable Cropping Systems in Peri-Urban Hanoi, Vietnam. International Journal of Life Science and Agriculture Research, 1(3), 38-45.

IPCC (The Intergovernmental Panel on Climate Change). (2006). IPCC guidelines for national GHG inventories. https:// www. ipcc- nggip. iges. or. jp/ public/ 2006gl/ index.html.

IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

IPCC (2019). 2019 refinement to the 2006- IPCC guidelines for national greenhouse gas inventories, volume 4: agriculture, forestry and other land use (AFOLU). https://www. ipcc- nggip. iges. or. jp/ public/ 2019rf/ vol4. html.

Kashyap, D., de Vries, M., Pronk, A., & Adiyoga, W. (2023). Environmental impact assessment of vegetable production in West Java, Indonesia. Science of The Total Environment. 864, 160999. https://doi.org/10.1016/j.scitotenv.2022.160999

Khai, N. M., Ha, P. Q., & Öborn I. (2007). Nutrient flows in small-scale peri-urban vegetable farming systems in Southeast Asia—A case study in Hanoi. Agriculture, Ecosystems & Environment, 122(2), 192-202. https://doi.org/10.1016/j.agee.2007.01.003

Kim, P., & Le, T. T. L. (2023). Trade-offs in greenhouse gas emissions for achieving financial efficiency in chili and mustard greens cultivation models in Hon Dat district, Kien Giang province. Can Tho University Journal of Science. 59: 42-53 (in Vietnamese).

Le , T. T. L., & Nguyen, T. (2021). Research on energy consumption through agricultural inputs usage and financial efficiency of leafy vegetables cultivation system in My Thuan commune, Hon Dat district, Kien Giang province, Vietnam. Can Tho University Journal of Science, 57, 138-147 (in Vietnamese).

Leon, A., & Izumi, T. (2022) Impacts of alternate wetting and drying on rice farmers’ profits and life cycle greenhouse gas emissions in An Giang Province in Vietnam. J Cleaner Prod 354, 131621.
https:// doi. org/ 10.1016/j. jclep ro. 2022. 131621

Liang, T., Liao, D., Wang S., Yang B., Zhao J., Zhu C., Tao Z., Shi X., Chen X., & Wang X. (2021). The nitrogen and carbon footprints of vegetable production in the subtropical high elevation mountain region. Ecological Indicators. 122: 107298. https://doi.org/10.1016/j.ecolind.2020.107298

MARD (Ministry of Agriculture and Rural Development). (2008). Good Agricultural Practices for Safe Fresh Fruit and Vegetable Production in Vietnam (VietGap) (No. 379/QĐ-BNN-KHCN dated on January 28, 2008) (in Vietnamese).
https://thuvienphapluat.vn/van-ban/Linh-vuc-khac/Quyet-dinh-379-QD-BNN-KHCN-quy-trinh-thuc-hanh-san-xuat-nong-nghiep-tot-cho-rau-qua-tuoi-an-toan-62746.aspx

Mbow, C., C. Rosenzweig, L.G. Barioni, T.G. Benton, M. Herrero, M. Krishnapillai, E. Liwenga, P. Pradhan, M.G. Rivera-Ferre, T. Sapkota, F.N. Tubiello, Y. Xu. (2019) Food security. climate change land: an IPCC special report on climate change, desertification, land degredation, sustainable land management, food security, GHG fluxes in terrestrial ecosystems. In: J. S. P. R. Shukla, E. Calvo Buendia, V. Masson-Delmotte, H.O. Pörtner, Roberts D. C. et al (Eds). Intergovernmental Panel on Climate Change.

MONRE (Ministry of Natural Resources and Environment). (2019). The grid emission factor of Vietnam for 2017 (No. 330/BĐKH-GNPT dated March 29, 2019) (in Vietnamese). http://www.dcc.gov.vn/van-ban-phap-luat/1054/Nghien-cuu,-xay-dung-he-so-phat-thai-(EF)-cua-luoi-dien-Viet-Nam-(K%C3%A8m-CV-330/BDKH-GNPT).html.

MONRE (2022). Announcement of the Emission Factor List for Greenhouse Gas Inventory (No. 2626/QĐ-BTNMT dated October 10, 2022) (in Vietnamese). https://thuvienphapluat.vn/van-ban/Tai-nguyen-Moi-truong/Quyet-dinh-2626-QD-BTNMT-2022-cong-bo-he-so-phat-thai-phuc-vu-kiem-ke-khi-nha-kinh-532253.aspx

Naik, P., Narayana, C. K., & Sanikommu, V. R. R. (2014). Estimation of crop residue of cabbage var. Unnathi and their nutritional value. Bioved, 25, 39-42.

Naseer, M., Persson T., Hjelkrem, A.-G. R., Ruoff, P., & Verheul, M. J. (2022). Life cycle assessment of tomato production for different production strategies in Norway. Journal of Cleaner Production. 372, 133659. https://doi.org/10.1016/j.jclepro.2022.133659

Nguyen, H. N., Nguyen, T. T. H., & Nguyen N. V. (2020). Evaluating the efficiency of vegetable production of farm househlods in Bac Ha district, Lao Cai province. Vietnam J. Agri. Sci. 18(9): 705-712 (in Vietnamese).

Nguyen, T. (2019). Strengthening the cooperative group through a cabbage cultivation model following the value chain (in Vietnamese). https://danviet.vn/cung-co-to-hop-tac-qua-mo-hinh-trong-bap-cai-theo-chuoi-7777945599.htm

Nguyen, Y. T. B., & Kamoshita, A. (2024). Factors influencing the carbon footprint of rice production in Northeastern Vietnam. The International Journal of Life Cycle Assessment. https:// doi. org/10.1007/s11367-024-02308-8.

Pham, V. H., Arthur, P. J. M., Oosterveer, P., Paul, J. van den B., & Pham, T. M. H. (2016) Pesticide use in Vietnamese vegetable production: a 10-year study. International Journal of Agricultural Sustainability, 14(3), 325-338 https://doi.org/10.1080/14735903.2015.1134395

PM (Prime Minister). (2020). Decision approving the Project on Organic Agriculture Development for the 2020–2030 Period. Government of Vietnam. (No. /QĐ-TTg dated on June 23, 2020) (in Vietnamese). https://vanban.chinhphu.vn/default.aspx?pageid=27160&docid=200315

Schreinemachers, P., Grovermann, C., Praneetvatakul, S., Heng, P., Nguyen, T.T.L., Buntong, B., Le, N.T., &Pinn, T. (2020). How much is too much? Quantifying pesticide overuse in vegetable production in Southeast Asia. Journal of Cleaner Production, 244, 118738. https://doi.org/10.1016/j.jclepro.2019.118738

Shabir, I., Dash, K. K., Dar, A. H., Pandey, V. K., Fayaz, U., & Srivastava, S. (2023). Carbon footprints evaluation for sustainable food processing system development: a comprehensive review. Future Foods, 7, 100215. https:// doi. org/ 10. 1016/j. fufo. 2023. 100215

Shen, X., Zhang, L., & Zhang, J. (2021) Ratoon rice production in central China: Environmental sustainability and food production. Sci of the Total Env, 764,142850.
https:// doi. org/ 10. 1016/j. scito tenv. 2020. 142850

Shrivastava, A., Tchale. H., Cao, B.T., Elabed, G., Kar, A., Kieu. H.T.P., & Nguyen, H. T. T. (2022). Vietnam - spearheading Vietnam’s green agricultural transformation: moving to low-carbon rice. Washington, D.C. : World Bank Group.
http://documents.worldbank.org/curated/en/099735109222222315

Tenhunen-Lunkka, A., Rommens, T., Vanderreydt, I., & Mortensen, L. (2023). Greenhouse Gas Emission Reduction Potential of European Union's Circularity Related Targets for Plastics. Circ Econ Sustain, 3(1), 475-510. https://doi.org/10.1007/s43615-022-00192-8

Vegetable and Fruit Research Institute. (2020). Intensive Cultivation Technical Process for Safe Cabbage CT17 under VietGap Standards (No. 13/QĐ-VRQ-KH dated January 7, 2020) (in Vietnamese).
http://kopia.favri.org.vn/index.php/9-quy-trinh-k-thu-t/3-quy-trinh-san-xuat-bi-ngoi-star-ol-va-azura-an-toan-theo-vietgap

West, T.O. and Marland, G. (2002). Asynthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agriculture, Ecosystems and Environment, 91, 217-232. https://doi.org/10.1016/S0167-8809 (01) 00233-X

Yan, M., Pan, G. X. & Chen, L. (2012). An analysis of carbon footprint of vegetable production in Jiangsu, China. Acta Horticulturae. 958, 203-210.
https://doi.org/10.17660/ActaHortic.2012.958.24

Yuttitham, M. (2019). Comparison of Carbon Footprint of Organic and Conventional Farming of Chinese Kale. Environment and Natural Resources Journal. 17, 78-92. https://doi.org/10.32526/ennrj.17.1.2019.08