Phạm Quốc Nhiên * , Hồ Cao Khánh , Nguyễn Quốc Châu Thanh Từ Thị Kim Cúc

* Tác giả liên hệ (pqnhien@ctu.edu.vn)

Abstract

Photo-switchable molecules have been recently utilized for many practical applications, especially for chemo-sensors. In this research, a smart fluorescent sensor SP-N3 was synthesized via simple reactions and its chemical structure was characterized by 1H, 13C-NMR and HR-MS spectra. Under Vis/UV light, the colorless and non-emissive close form of SP-N3 was reversibly photoisomerized to the colored and emissive open form of MC-N3. MC-N3 displayed multi-stimuli responsive optical behaviors under various conditions of solvents, UV/Vis lights, pH media, and metal ions. The red color and emission of MC-N3 were easily quenched by ferric ion interaction, which was utilized for Fe3+ detection in water with high selectivity and sensitivity (LOD = 1.683 and 0.690 mM) via UV-Vis and fluorescent techniques, respectively.

Keywords: Fe3 , fluorescent, multi-stimuli responsive, sensor, spiropyran

Tóm tắt

Các hợp chất biến đổi quang ngày càng được ứng dụng nhiều trong thực tế, đặc biệt là lĩnh vực cảm biến hóa học. Trong nghiên cứu này, một cảm biến huỳnh quang thông minh spiropyran azide (SP-N3) được tổng hợp bằng các phản ứng đơn giản và cấu trúc hóa học của hợp chất này được xác định bằng phổ 1H, 13C-NMR và HR-MS. Dưới ánh sáng Vis/UV, dạng đóng vòng SP-N3 không màu, không phát quang có khả năng đồng phân hóa thuận nghịch thành dạng mở vòng merocyanine azide (MC-N3) có màu và phát quang tốt. Hợp chất MC-N3 thể hiện khả năng đáp ứng quang đa kích thích dưới ảnh hưởng của dung môi, tia UV/Vis, pH của môi trường và ion kim loại. Màu và huỳnh quang của MC-N3 dễ dàng bị dập tắt khi tương tác với ion Fe3+, do đó cảm biến MC-N3 được ứng dụng để xác định hàm lượng Fe3+ trong nước bằng cả phương pháp UV-Vis và huỳnh quang với độ chọn lọc và độ nhạy cao (LOD = 1,683 và 0,690 mM).

Từ khóa: Cảm biến, đáp ứng đa kích thích, Fe3 , huỳnh quang, spiropyran

Article Details

Tài liệu tham khảo

Abdollahi, A., Sahandi-Zangabad, K., & Roghani-Mamaqani, H. (2018). Rewritable anticounterfeiting polymer inks based on functionalized stimuli-responsive latex particles containing spiropyran photoswitches: reversible photopatterning and security marking. ACS Appl. Mater. Interfaces, 10, 39279-39292. https://doi.org/10.1021/acsami.8b14865

AOAC. (2016). AOAC Official Methods of Analysis, Appendix F: Guidelines for Standard Method Performance Requirements (2016 ed.). Association of Official Analytical Chemists. https://www.aoac.org/wp-content/uploads/2019/08/app_f.pdf

Dattler, D., Fuks, G., Heiser, J., Moulin, E., Perrot, A., Yao, X., & Giuseppone, N. (2020). Design of collective motions from synthetic molecular switches, rotors and motors. Chem. Rev., 120, 310-433. https://doi.org/10.1021/acs.chemrev.9b00288

Garg, R. & Singh, S.K. (2022). Treatment technologies for sustainable management of wastewater from iron and steel industry - a review. Environ. Sci. Pollut. Res., 29, 75203-75222.
https://doi.org/10.1007/s11356-022-23051-3

Julià-López, A., Ruiz-Molina, D., Hernando, J., & Roscini, C. (2019). Solid materials with tunable reverse photochromism. ACS Appl. Mater. Interfaces, 11, 11884-11892. https://doi.org/10.1021/acsami.8b22335

Kaushik, R., Sakla, R., Kumar, N., Ghosh, A., Ghule, V. D., & Jose, D. A. (2021). Multianalytes sensing probe: Fluorescent moisture detection, smartphone assisted colorimetric phosgene recognition and colorimetric discrimination of Cu2+ and Fe3+ ions. Sens. Actuators B Chem., 328, 129026. https://doi.org/10.1016/j.snb.2020.129026

Klajn, R. (2014). Spiropyran-based dynamic materials. Chem. Soc. Rev., 43, 148-184. https://doi.org/10.1039/C3CS60181A

Kortekaas, L., & Browne, W. R. (2019). The evolution of spiropyran: Fundamentals and progress of an extraordinarily versatile photochrome. Chem. Soc. Rev., 48, 3406-3424. https://doi.org/10.1039/C9CS00203K

Liu, X., Chen, Z., Gao, R., Kan, C., & Xu, J. (2021). Portable quantitative detection of Fe3+ by integrating a smartphone with colorimetric responses of a rhodamine-functionalized polyacrylamide hydrogel chemosensor. Sens. Actuators B Chem., 340, 129958. https://doi.org/10.1016/j.snb.2021.129958

Ma, H., Wu, R., Xiong, J., Guo, H., & Yang, F. (2020). Bis-biphenylacrylonitrile bridged with crown ether chain: a novel fluorescence sensor for Fe3+ in aqueous media. New J. Chem., 44 11746-11751. https://doi.org/10.1039/D0NJ02412K

Nhien, P. Q., Chou, W.-L., Cuc, T. T. K., Khang, T. M., Wu, C.-H., Thirumalaivasan, N., Hue, B. T. B., Wu, J. I., Wu, S.-P., & Lin, H.-C. 2020). Multi-Stimuli Responsive FRET Processes of Bi-Fluorophoric AIEgens in an Amphiphilic Copolymer and its Application to Cyanide Detection in Aqueous Media. ACS Appl. Mater. Interfaces, 12(9), 10959-10972. https://doi.org/10.1021/acsami.9b21970

Nhien, P. Q., Chang, H.-K., Cuc, T. T. K., Khang, T. M., Wu, C.-H., Hue, B. T. B., Wu, J. I., & Lin, H.-C. (2022). Multi-stimuli responsive fluorescence switching behaviours of AIE polymers for acid-base vapour sensing and highly sensitive ferric ion detection. Sens. Actuators B Chem., 372, 132634. https://doi.org/10.1016/j.snb.2022.132634

Olmez, G. M., Filiz, B. D., Karanfil, T., & Yetis, U. (2016). The environmental impacts of iron and steel industry: a life cycle assessment study. Journal of Cleaner Production, 130, 195-201. https://doi.org/10.1016/j.jclepro.2015.09.139

Rad, J. K., Balzade, Z., & Mahdavian, A. R. (2022). Spiropyran-based advanced photoswitchable materials: a fascinating pathway to the future stimuli-responsive devices. J. Photochem. Photobiol. C: Photochem. Rev., 51, 100487. https://doi.org/10.1016/j.jphotochemrev.2022.100487

Raymo, F. M. & Giordani, S. (2001). Signal Processing at the Molecular Level. J. Am. Chem. Soc., 123, 4651-4652. https://doi.org/10.1021/ja005699n

Sabzkoohi, H. A., Dodier, V., & Kolliopoulos, G. (2023). A validated analytical method to measure metals dissolved in deep eutectic solvents. RSC Adv., 13, 14887-1898. https://doi.org/10.1039/D3RA02372A

Uhrovčík, J. (2014). Strategy for determination of LOD and LOQ values – Some basic aspects. Talanta, 119, 178-180. https://doi.org/10.1016/j.talanta.2013.10.061

US EPA. (2018). Drinking Water Standards and Health Advisories (2018 ed.). U.S Environmental Protection Agency: Washington, DC. https://www.epa.gov/system/files/documents/2022-01/dwtable2018.pdf

Wang, L., & Li, Q. (2018). Photochromism into nanosystems: towards lighting up the future nanoworld. Chem. Soc. Rev., 47, 1044-1097. https://doi.org/10.1039/C7CS00630F

WHO. (2017). Guidelines for Drinking-Water Quality (4th ed.). World Health Organization: Geneva, Switzerland.
https://iris.who.int/bitstream/handle/10665/352532/9789240045064-eng.pdf?sequence=1

Wojtunik-Kulesza, K., Oniszczuk, A., & Waksmundzka-Hajnos, M. (2019). An attempt to elucidate the role of iron and zinc ions in development of Alzheimer’s and Parkinson’s diseases. Biomedicine & Pharmacotherapy, 111,1277-1289. https://doi.org/10.1016/j.biopha.2018.12.140

Yang, Y., Gao, C.-Y., Zhang, N., & Dong, D. (2016). Self-assembly of fluorescent organic nanoparticles for iron(III) sensing and cellular imaging. ACS Appl. Mater. Interfaces, 8(11), 7440-7448. https://doi.org/10.1021/acsami.6b00065

Zhang, Q. M., Wang, W., Su, Y.-Q., Hensen, E. J. M., & Serpe, M. J. (2016). Biological imaging and sensing with multiresponsive microgels. Chem. Mater., 28, 259-265.
https://doi.org/10.1021/acs.chemmater.5b04028

Zhang, Y., Ng, M., Hong, E. Y.-H., Chan, A. K.-W., Wu, N. M.-W, Chan, M. H.-Y., Wu, L., & Yam, V. W-W. (2020). Synthesis and photoswitchable amphiphilicity and self-assembly properties of photochromic spiropyran derivatives. J. Mater. Chem., C 8, 13676-13685.
https://doi.org/10.1039/D0TC03301D.

Zhang, Z., Li, F., He, C., Ma, H., Feng, Y., Zhang, Y., & Zhang, M. (2018). Novel Fe3+ fluorescence probe based on the charge-transfer (CT) molecules. Sens. Actuators B Chem., 255, 1878-1883. https://doi.org/10.1016/j.snb.2017.08.211

Zhao, B., Liu, T., Fang, Y., Wang, L., Kan, W., Deng, Q., & Song, B. (2017). A new selective chemosensor based on phenanthro[9,10-d] imidazole-coumarin with sequential “on-off-on” fluorescence response to Fe3+ and phosphate anions and its application in live cell. Sens. Actuators B Chem., 246, 370-379. https://doi.org/10.1016/j.snb.2017.02.079

Zheng, T., Xu, Z., Zhao, Y., Li, H., Jian, R., & Lu, C. (2018). Multiresponsive polysiloxane bearing photochromic spirobenzopyran for sensing pH changes and Fe3+ ions and sequential sensing of Ag+ and Hg2+ ions. Sens. Actuators B Chem., 255, 3305-3315.
https://doi.org/10.1016/j.snb.2017.09.158

Zhou, J., Huang, M., Zhang, Y., Xu, S., & Li, Z. (2020). Novel spiropyran derivative-based colourimetric and fluorescent chemosensor for detecting trivalent metal ions. Optik, 218, 164991. https://doi.org/10.1016/j.ijleo.2020.164991