Tính đóng và tính nửa liên tục trên của nghiệm hữu hiệu bài toán cân bằng vector
Abstract
This paper studies vector equilibrium problems in normed spaces. Firstly, the paper provides sufficient conditions for the closedness of efficient solution sets of reference problems. Subsequently, the paper studies the useful properties of a nonlinear scalarization function in the sense of generalized oriented Hiriart-Urruty introduced in the literature. These properties are utilized to establish sufficient conditions for the upper semicontinuity of efficient solution maps of the considered problems when the data are perturbed.
Tóm tắt
Bài báo nghiên cứu bài toán cân bằng vector trong không gian định chuẩn. Trước hết, bài báo đưa ra các điều kiện đủ cho tính đóng của tập nghiệm hữu hiệu của bài toán đang xét. Tiếp theo, bài báo khảo sát một số tính chất hữu dụng của một hàm vô hướng hoá phi tuyến dạng Hiriart-Urruty mở rộng đã được giới thiệu trong tài liệu. Các tính chất này được dùng để thiết lập các điều kiện đủ cho tính nửa liên tục trên của ánh xạ nghiệm hữu hiệu cho bài toán đang xét khi dữ liệu của bài toán bị nhiễu.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Aubin, J. P., & Ekeland, I. (2006). Applied nonlinear analysis. Courier Corporation.
Aubin, J. P., & Frankowska, H. (2009). Set-valued Analysis. Springer Science & Business Media. https://doi.org/10.1007/978-0-8176-4848-0
Anh, L. Q., Khanh, P. Q., & Tam, T. N. (2019). Continuity of approximate solution maps of primal and dual vector equilibrium problems. Optimization Letters, 13, 201-211.
https://doi.org/10.1007/s11590-018-1264-8
Anh, L. Q., Duy, T. Q., & Hien, D. V. (2020). Well-posedness for the optimistic counterpart of uncertain vector optimization problems. Annals of Operations Research, 295, 517-533. https://doi.org/10.1007/s10479-020-03840-0
Anh, L. Q., Duoc, P. T., Tam, T. N., & Thang, N. C. (2021). Stability analysis for set-valued equilibrium problems with applications to Browder variational inclusions. Optimization Letters, 15, 613-626. https://doi.org/10.1007/s11590-020-01604-0
Anh, L.Q., Anh, N. T., Duoc, P. T., Khanh, L. T. V., Thu, P. T. A. (2023). Connectedness properties of efficient and minimal sets to vector optimization problems. Applied Set-Valued Analysis & Optimization, 5(1), 2023.
https://doi.org/10.23952/asvao.5.2023.1.08
Bianchi, M., Kassay, G., & Pini, R. (2007). Ekeland’s principle for vector equilibrium problems. Nonlinear Analysis: Theory, Methods & Applications, 66(7), 1454-1464.
https://doi.org/10.1016/j.na.2006.02.003
Chadli, O., Ansari, Q. H., & Al-Homidan, S. (2017). Existence of solutions and algorithms for bilevel vector equilibrium problems: an auxiliary principle technique. Journal of Optimization Theory and Applications, 172, 726-758. https://doi.org/10.1007/s10957-017-1062-y
Chen, C. R., Li, S. J., & Fang, Z. M. (2010). On the solution semicontinuity to a parametric generalized vector quasivariational inequality. Computers & Mathematics with Applications, 60(8), 2417-2425. https://doi.org/10.1016/j.camwa.2010.08.036
Farajzadeh, A. P., Wangkeeree, R., & Kerdkaew, J. (2019). On the existence of solutions of symmetric vector equilibrium problems via nonlinear scalarization. Bulletin of the Iranian Mathematical Society, 45, 35-58.
https://doi.org/10.1007/s41980-018-0118-6
Han, Y., & Gong, X. H. (2014). Lower semicontinuity of solution mapping to parametric generalized strong vector equilibrium problems. Applied Mathematics Letters, 28, 38-41.
https://doi.org/10.1016/j.aml.2013.09.006
Han, Y., & Huang, N. J. (2017). Well-posedness and stability of solutions for set optimization problems. Optimization, 66(1), 17-33. https://doi.org/10.1080/02331934.2016.1247270
Hu, S., & Papageorgiou, N. S. (1997). Handbook of Multivalued Analysis: Volume I: Theory. Springer Science & Business Media. https://doi.org/10.1016/S0898-1221(98)9022 8-0
Hiriart-Urruty, J. B. (1979). Tangent cones, generalized gradients and mathematical programming in Banach spaces. Mathematics of operations research, 4(1), 79-97. https://doi.org/10.1287/moor.4.1.79
Iusem, A. N., & Mohebbi, V. (2019). Extragradient methods for vector equilibrium problems in Banach spaces. Numerical Functional Analysis and Optimization, 40(9), 993-1022. https://doi.org/10.1080/01630563.2019.1578232
Kassay, G., & Radulescu, V. (2018). Equilibrium problems and applications. Academic Press.
https://doi.org/10.1016/C2015-0-06685-0
László, S. (2016). Vector equilibrium problems on dense sets. Journal of Optimization Theory and Applications, 170(2), 437-457. https://doi.org/10.1007/s10957-016-0915-0
Sadeqi, I., & Salehi Paydar, M. (2016). Lipschitz continuity of an approximate solution mapping for parametric set-valued vector equilibrium problems. Optimization, 65(5), 1003-1021. https://doi.org/10.1080/02331934.2015.1105802
Sach, P. H., & Tuan, L. A. (2016). Lower semicontinuity results in parametric multivalued weak vector equilibrium problems and applications. Numerical Functional Analysis and Optimization, 37(6), 753-785. https://doi.org/10.1080/01630563.2016.1176929
Tam, T. N. (2024). Hölder continuity of solution maps to parametric set-valued Ky Fan inequalities. Optimization, 73(3), 623-640. https://doi.org/10.1080/02331934.2022.2122716
Xu, S., & Li, S. J. (2009). A new proof approach to lower semicontinuity for parametric vector equilibrium problems. Optimization Letters, 3, 453-459.
https://doi.org/10.1007/s11590-009-0124-y
Xu, Y., & Zhang, P. (2018). Connectedness of solution sets of strong vector equilibrium problems with an application. Journal of Optimization Theory and Applications, 178, 131-152. https://doi.org/10.1007/s10957-018-1244-2
Xu, Y. D., Chen, C. R., & Fang, C. J. (2020). Hölder continuity for solution mappings of parametric non-convex strong generalized Ky Fan inequalities. Numerical Functional Analysis and Optimization, 41(3), 344-360. https://doi.org/10.1080/01630563.2019.1628051
Zaffaroni, A. (2003). Degrees of efficiency and degrees of minimality. SIAM Journal on Control and Optimization, 42(3), 1071-1086. https://doi.org/10.1137/S0363012902411532