Nguyễn Thái Anh , Thái Thị Mỹ Hồng , Nguyễn Thị Yến Nhi , Trần Ngọc Tâm * Nguyễn Khánh Vy

* Tác giả liên hệ (tntam@ctu.edu.vn)

Abstract

This paper studies vector equilibrium problems in normed spaces. Firstly, the paper provides sufficient conditions for the closedness of efficient solution sets of reference problems. Subsequently, the paper studies the useful properties of a nonlinear scalarization function in the sense of generalized oriented Hiriart-Urruty introduced in the literature. These properties are utilized to establish sufficient conditions for the upper semicontinuity of efficient solution maps of the considered problems when the data are perturbed. 

Keywords: Vector equilibrium problem, Hiriart-Urruty oriented distance function, Closedness of solution sets, Semicontinuity

Tóm tắt

Bài báo nghiên cứu bài toán cân bằng vector trong không gian định chuẩn. Trước hết, bài báo đưa ra các điều kiện đủ cho tính đóng của tập nghiệm hữu hiệu của bài toán đang xét. Tiếp theo, bài báo khảo sát một số tính chất hữu dụng của một hàm vô hướng hoá phi tuyến dạng Hiriart-Urruty mở rộng đã được giới thiệu trong tài liệu. Các tính chất này được dùng để thiết lập các điều kiện đủ cho tính nửa liên tục trên của ánh xạ nghiệm hữu hiệu cho bài toán đang xét khi dữ liệu của bài toán bị nhiễu.

Từ khóa: Bài toán cân bằng vector, Hàm khoảng cách định hướng Hiriart-Urruty, Tính đóng của tập nghiệm, Tính nửa liên tục

Article Details

Tài liệu tham khảo

Aubin, J. P., & Ekeland, I. (2006). Applied nonlinear analysis. Courier Corporation.

Aubin, J. P., & Frankowska, H. (2009). Set-valued Analysis. Springer Science & Business Media. https://doi.org/10.1007/978-0-8176-4848-0

Anh, L. Q., Khanh, P. Q., & Tam, T. N. (2019). Continuity of approximate solution maps of primal and dual vector equilibrium problems. Optimization Letters, 13, 201-211.

https://doi.org/10.1007/s11590-018-1264-8

Anh, L. Q., Duy, T. Q., & Hien, D. V. (2020). Well-posedness for the optimistic counterpart of uncertain vector optimization problems. Annals of Operations Research, 295, 517-533. https://doi.org/10.1007/s10479-020-03840-0

Anh, L. Q., Duoc, P. T., Tam, T. N., & Thang, N. C. (2021). Stability analysis for set-valued equilibrium problems with applications to Browder variational inclusions. Optimization Letters, 15, 613-626. https://doi.org/10.1007/s11590-020-01604-0

Anh, L.Q., Anh, N. T., Duoc, P. T., Khanh, L. T. V., Thu, P. T. A. (2023). Connectedness properties of efficient and minimal sets to vector optimization problems. Applied Set-Valued Analysis & Optimization, 5(1), 2023.
https://doi.org/10.23952/asvao.5.2023.1.08

Bianchi, M., Kassay, G., & Pini, R. (2007). Ekeland’s principle for vector equilibrium problems. Nonlinear Analysis: Theory, Methods & Applications, 66(7), 1454-1464.
https://doi.org/10.1016/j.na.2006.02.003

Chadli, O., Ansari, Q. H., & Al-Homidan, S. (2017). Existence of solutions and algorithms for bilevel vector equilibrium problems: an auxiliary principle technique. Journal of Optimization Theory and Applications, 172, 726-758. https://doi.org/10.1007/s10957-017-1062-y

Chen, C. R., Li, S. J., & Fang, Z. M. (2010). On the solution semicontinuity to a parametric generalized vector quasivariational inequality. Computers & Mathematics with Applications, 60(8), 2417-2425. https://doi.org/10.1016/j.camwa.2010.08.036

Farajzadeh, A. P., Wangkeeree, R., & Kerdkaew, J. (2019). On the existence of solutions of symmetric vector equilibrium problems via nonlinear scalarization. Bulletin of the Iranian Mathematical Society, 45, 35-58.
https://doi.org/10.1007/s41980-018-0118-6

Han, Y., & Gong, X. H. (2014). Lower semicontinuity of solution mapping to parametric generalized strong vector equilibrium problems. Applied Mathematics Letters, 28, 38-41.
https://doi.org/10.1016/j.aml.2013.09.006

Han, Y., & Huang, N. J. (2017). Well-posedness and stability of solutions for set optimization problems. Optimization, 66(1), 17-33. https://doi.org/10.1080/02331934.2016.1247270

Hu, S., & Papageorgiou, N. S. (1997). Handbook of Multivalued Analysis: Volume I: Theory. Springer Science & Business Media. https://doi.org/10.1016/S0898-1221(98)9022 8-0

Hiriart-Urruty, J. B. (1979). Tangent cones, generalized gradients and mathematical programming in Banach spaces. Mathematics of operations research, 4(1), 79-97. https://doi.org/10.1287/moor.4.1.79

Iusem, A. N., & Mohebbi, V. (2019). Extragradient methods for vector equilibrium problems in Banach spaces. Numerical Functional Analysis and Optimization, 40(9), 993-1022. https://doi.org/10.1080/01630563.2019.1578232

Kassay, G., & Radulescu, V. (2018). Equilibrium problems and applications. Academic Press.
https://doi.org/10.1016/C2015-0-06685-0

László, S. (2016). Vector equilibrium problems on dense sets. Journal of Optimization Theory and Applications, 170(2), 437-457. https://doi.org/10.1007/s10957-016-0915-0

Sadeqi, I., & Salehi Paydar, M. (2016). Lipschitz continuity of an approximate solution mapping for parametric set-valued vector equilibrium problems. Optimization, 65(5), 1003-1021. https://doi.org/10.1080/02331934.2015.1105802

Sach, P. H., & Tuan, L. A. (2016). Lower semicontinuity results in parametric multivalued weak vector equilibrium problems and applications. Numerical Functional Analysis and Optimization, 37(6), 753-785. https://doi.org/10.1080/01630563.2016.1176929

Tam, T. N. (2024). Hölder continuity of solution maps to parametric set-valued Ky Fan inequalities. Optimization, 73(3), 623-640. https://doi.org/10.1080/02331934.2022.2122716

Xu, S., & Li, S. J. (2009). A new proof approach to lower semicontinuity for parametric vector equilibrium problems. Optimization Letters, 3, 453-459.
https://doi.org/10.1007/s11590-009-0124-y

Xu, Y., & Zhang, P. (2018). Connectedness of solution sets of strong vector equilibrium problems with an application. Journal of Optimization Theory and Applications, 178, 131-152. https://doi.org/10.1007/s10957-018-1244-2

Xu, Y. D., Chen, C. R., & Fang, C. J. (2020). Hölder continuity for solution mappings of parametric non-convex strong generalized Ky Fan inequalities. Numerical Functional Analysis and Optimization, 41(3), 344-360. https://doi.org/10.1080/01630563.2019.1628051

Zaffaroni, A. (2003). Degrees of efficiency and degrees of minimality. SIAM Journal on Control and Optimization, 42(3), 1071-1086. https://doi.org/10.1137/S0363012902411532