Nguyễn Thị Bảo Trang , Nguyễn Võ Anh Duy , Nguyễn Chí Bền , Phạm Vũ Nhật Đặng Minh Triết *

* Tác giả liên hệ (dmtriet@ctu.edu.vn)

Abstract

The optoelectronic properties of type II core-crown hexagonal graphene quantum dots doped with vanadium (HBC-xV) were investigated using the density functional theory simulation method. To precisely predict the orbital interactions between the d-orbitals of vanadium atoms, we use Heyd-Scuseria-Ernzerhof as exchange-correlation functional. It was shown that by doping vanadium atoms to these quantum dots, the absorption spectra exhibit remarkable red-shifts towards the visible light range. The absorption mechanism between the core and the crown portions of the dots was also explained. These results highlight the essence of vanadium doped atoms to the electronic and optical properties and enhance the light-to-electricity conversion capacity of these type II core-crown quantum dots.

Keywords: Hexa-peri-hexabenzocoronene graphene quantum dots, optoelectronic properties, solar cells, doping vanadium

Tóm tắt

Trong nghiên cứu này, các đặc tính quang-điện tử của các chấm lượng tử dị thể loại II dạng lõi-vỏ (HBC-xV), với lõi là một vòng lục giác graphene pha tạp x số nguyên tử vanadium (V) và vỏ là chấm lượng tử có cấu trúc Hexa-peri-hexabenzocoronene (HBC) được tìm hiểu bằng phương pháp lý thuyết phiếm hàm mật độ DFT. Nghiên cứu sử dụng phiếm hàm tương quan trao đổi Heyd-Scuseria-Ernzerhof để tập trung khảo sát tương tác điện tử-điện tử giữa các electron lớp d trong vanadium. Kết quả cho thấy, sự hình thành chấm lượng tử lõi-vỏ loại II HBC-xV đã dẫn đến sự dịch chuyển đỏ đáng kể của phổ hấp thụ quang về vùng khả kiến ​​so với các chấm lượng tử graphene. Cơ chế dịch chuyển điện tử giữa phần lõi và phần vỏ trong chấm lượng tử cũng đã được chỉ ra. Những kết quả này giúp hiểu rõ hơn cơ chế phát quang, mối quan hệ chặt chẽ giữa cấu trúc vùng năng lượng và phổ hấp thụ quang của chấm lượng tử graphene với mong muốn cải thiện độ chọn lọc ánh sáng và hiệu suất chuyển đổi của pin mặt trời thế hệ mới.

Từ khóa: Chấm lượng tử graphene Hexa-peri-hexabenzocoronene, tính chất quang-điện tử, thiết bị năng lượng mặt trời, pha tạp vanadium

Article Details

Tài liệu tham khảo

Abbas, A., Tabish, T. A., Bull, S. J., Lim, T. M., & Phan, A. N. (2020). High yield synthesis of graphene quantum dots from biomass waste as a highly selective probe for Fe3+ sensing. Scientific Reports, 10(1), 1–16. https://doi.org/10.1038/s41598-020-78070-2
Aliano, A., & Cicero, G. (2012). Encyclopedia of Nanotechnology. In Encyclopedia of Nanotechnology. https://doi.org/10.1007/978-90-481-9751-4
Allouche, A. (2012). Software News and Updates Gabedit — A Graphical User Interface for Computational Chemistry Softwares. Journal of Computational Chemistry, 32, 174–182. https://doi.org/10.1002/jcc
Anithaa, V. S., Shankar, R., & Vijayakumar, S. (2020). Structural and electronic properties of graphene and its derivatives physisorbed by ionic liquids. Diamond and Related Materials, 109, 108005. https://doi.org/https://doi.org/10.1016/j.diamond.2020.108005
Antanovich, A. V., Prudnikau, A. V., Melnikau, D., Rakovich, Y. P., Chuvilin, A., Woggon, U., Achtstein, A. W., & Artemyev, M. V. (2015). Colloidal synthesis and optical properties of type-II CdSe-CdTe and inverted CdTe-CdSe core-wing heteronanoplatelets. Nanoscale, 7(17), 8084–8092. https://doi.org/10.1039/c4nr07134d
Bacon, M., Bradley, S. J., & Nann, T. (2014). Graphene quantum dots. Particle and Particle Systems Characterization, 31(4), 415–428. https://doi.org/10.1002/ppsc.201300252
Chen, C., & Ong, S. P. (2022). A universal graph deep learning interatomic potential for the periodic table. Nature Computational Science, 2(11), 718–728. https://doi.org/10.1038/s43588-022-00349-3
Dam, B. Van, Nie, H., Ju, B., Marino, E., Paulusse, J. M. J., & Schall, P. (2017). Single-Carbon Dots. 1702098, 1–5. https://doi.org/10.1002/smll.201702098
Dang, M. T., Bich Thao, P. T., Ngoc Thao, T. T., & Tien, N. T. (2022). First-principles study of electronic and optical properties of small edge-functionalized penta-graphene quantum dots. AIP Advances, 12(6). https://doi.org/10.1063/5.0091475
Duy, N. V. A., Triet, D. M., & An, D. Van. (2022). Electric Field as A Novel Switch to Enhance Optical Absorption Spectra of Defect Blue Phosphorene Thin-films. VNU Journal of Science: Mathematics - Physics, 38(2), 71–81. https://doi.org/10.25073/2588-1124/vnumap.4683
Ehrler, B., Alarcón-Lladó, E., Tabernig, S. W., Veeken, T., Garnett, E. C., & Polman, A. (2020). Photovoltaics Reaching for the Shockley–Queisser Limit. ACS Energy Letters, 5(9), 3029–3033. https://doi.org/10.1021/acsenergylett.0c01790
Feng, J., Dong, H., Pang, B., Chen, Y., Yu, L., & Dong, L. (2019). Tuning the electronic and optical properties of graphene quantum dots by selective boronization. Journal of Materials Chemistry C, 7(2), 237–246. https://doi.org/10.1039/c8tc03863e
García de Arquer, F. P., Talapin, D. V, Klimov, V. I., Arakawa, Y., Bayer, M., & Sargent, E. H. (2024). Semiconductor quantum dots: Technological progress and future challenges. Science, 373(6555), eaaz8541. https://doi.org/10.1126/science.aaz8541
Goyal, A., Demmenie, M., Huang, C. C., Schall, P., & Dohnalova, K. (2020). Photophysical properties of ball milled silicon nanostructures. Faraday Discussions, 222, 96–107. https://doi.org/10.1039/c9fd00105k
Green, M., Williamson, P., Samalova, M., Davis, J., Brovelli, S., Dobson, P., & Cacialli, F. (2009). Synthesis of type II/type I CdTe/CdS/ZnS quantum dots and their use in cellular imaging. Journal of Materials Chemistry, 19(44), 8341–8346. https://doi.org/10.1039/b913292a
Grimaldi, G., Van Den Brom, M. J., Du Fossé, I., Crisp, R. W., Kirkwood, N., Gudjonsdottir, S., Geuchies, J. J., Kinge, S., Siebbeles, L. D. A., & Houtepen, A. J. (2019). Engineering the Band Alignment in QD Heterojunction Films via Ligand Exchange. Journal of Physical Chemistry C, 123(49), 29599–29608. https://doi.org/10.1021/acs.jpcc.9b09470
Ivanov, S. A., Piryatinski, A., Nanda, J., Tretiak, S., Zavadil, K. R., Wallace, W. O., Werder, D., & Klimov, V. I. (2007). Type-II core/shell CdS/ZnSe nanocrystals: Synthesis, electronic structures, and spectroscopic properties. Journal of the American Chemical Society, 129(38), 11708–11719. https://doi.org/10.1021/ja068351m
Krasheninnikov, A. V., Lehtinen, P. O., Foster, A. S., Pyykkö, P., & Nieminen, R. M. (2009). Embedding transition-metal atoms in graphene: Structure, bonding, and magnetism. Physical Review Letters, 102(12), 2–5. https://doi.org/10.1103/PhysRevLett.102.126807
Kumar, A., Sayyed, M. I., Punina, D., Naranjo, E., Jácome, E., Abdulameer, M. K., Albazoni, H. J., & Shariatinia, Z. (2023). Graphene quantum dots (GQD) and edge-functionalized GQDs as hole transport materials in perovskite solar cells for producing renewable energy: a DFT and TD-DFT study. RSC Advances, 13(42), 29163–29173. https://doi.org/10.1039/D3RA05438A
Lee, S. H., Kim, D. Y., Lee, J., Lee, S. B., Han, H., Kim, Y. Y., Mun, S. C., Im, S. H., Kim, T. H., & Park, O. O. (2019). Synthesis of Single-Crystalline Hexagonal Graphene Quantum Dots from Solution Chemistry. Nano Letters, 19(8), 5437–5442. https://doi.org/10.1021/acs.nanolett.9b01940
Li, M., Chen, T., Gooding, J. J., & Liu, J. (2019). A Review of Carbon and Graphene Quantum Dots for Sensing. ACS sensors, 4(7), 1732-1748. https://doi.org/10.1021/acssensors.9b00514
Li, X., Rui, M., Song, J., Shen, Z., & Zeng, H. (2015). Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review. Advanced Functional Materials, 25(31), 4929–4947. https://doi.org/10.1002/adfm.201501250
Liao, X., Lu, R., Xia, L., Liu, Q., Wang, H., Zhao, K., Wang, Z., & Zhao, Y. (2022). Density Functional Theory for Electrocatalysis. Energy and Environmental Materials, 5(1), 157–185. https://doi.org/10.1002/eem2.12204
Liu, R., Wu, D., Feng, X., & Müllen, K. (2011). Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. Journal of the American Chemical Society, 133(39), 15221–15223. https://doi.org/10.1021/ja204953k
Liu, X., Liu, L., Yang, L., Wu, X., & Chu, P. K. (2016). Optical Identification of Topological Defect Types in Monolayer Arsenene by First-Principles Calculation. The Journal of Physical Chemistry C, 120(43), 24917–24924. https://doi.org/10.1021/acs.jpcc.6b10303
Miller, O. D., Yablonovitch, E., & Kurtz, S. R. (2012). Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit. IEEE Journal of Photovoltaics, 2(3), 303–311. https://doi.org/10.1109/JPHOTOV.2012.2198434
Nhat, P. V, Si, N. T, Tram, N. T. T, Duong, L. Van, & Nguyen, M. T. (2020). Elucidating the binding mechanism of thione-containing mercaptopurine and thioguanine drugs to small gold clusters. Journal of Computational Chemistry, 41(19), 1748–1758.
https://doi.org/10.1002/jcc.26216
Nhat, P. V, Duy, N. V. A., Tran, T. N., Si, N. T., Nguyen, T. A., To Van, N., Van Nghia, N., Schall, P., Dinh, V. A., & Dang, M. T. (2024a). Optoelectronic Properties of Nitrogen-Doped Hexagonal Graphene Quantum Dots: A First-Principles Study. ACS Omega, 9(18), 20056–20065. https://doi.org/10.1021/acsomega.3c10501
Nhat, P. V, Duy, N. V. A., Tran, T. N., Si, N. T., Nguyen, T. A., To Van, N., Van Nghia, N., Schall, P., Dinh, V. A., & Dang, M. T. (2024b). Optoelectronic Properties of Nitrogen-Doped Hexagonal Graphene Quantum Dots: A First-Principles Study. ACS Omega, 9(18), 20056–20065. https://doi.org/10.1021/acsomega.3c10501
Pan, D., Zhang, J., Li, Z., & Wu, M. (2010). Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Advanced Materials, 22(6), 734–738. https://doi.org/10.1002/adma.200902825
Park, H., Shin, D. J., & Yu, J. (2021). Categorization of Quantum Dots, Clusters, Nanoclusters, and Nanodots. Journal of Chemical Education, 98(3), 703–709. https://doi.org/10.1021/acs.jchemed.0c01403
Peng, J., Gao, W., Gupta, B. K., Liu, Z., Romero-Aburto, R., Ge, L., Song, L., Alemany, L. B., Zhan, X., Gao, G., Vithayathil, S. A., Kaipparettu, B. A., Marti, A. A., Hayashi, T., Zhu, J. J., & Ajayan, P. M. (2012). Graphene quantum dots derived from carbon fibers. Nano Letters, 12(2), 844–849. https://doi.org/10.1021/nl2038979
Peyghan, A. A., & Beheshtian, J. (2020). Application of hexa‐peri‐hexabenzocoronene nanographene and its B, N, and Bn doped forms in Na-ion batteries: A density functional theory study. Thin Solid Films, 704, 137979. https://doi.org/https://doi.org/10.1016/j.tsf.2020.137979
Prabhu, S. A., & Suganthy, V. K. R. (2020). Graphene quantum dots synthesis and energy application : a review. Carbon Letters, 0123456789. https://doi.org/10.1007/s42823-020-00154-w
Prudnikau, A., Chuvilin, A., & Artemyev, M. (2013). CdSe-CdS nanoheteroplatelets with efficient photoexcitation of central CdSe region through epitaxially grown CdS wings. Journal of the American Chemical Society, 135(39), 14476–14479. https://doi.org/10.1021/ja401737z
Roondhe, V., Roondhe, B., Saxena, S., Ahuja, R., & Shukla, A. (2023). On using non-Kekulé triangular graphene quantum dots for scavenging hazardous sulfur hexafluoride components. Heliyon, 9(4), e15388. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e15388
SCM AMS2023, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. (2023).
Shockley, W., & Queisser, H. J. (1961). Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 32(3), 510–519.
https://doi.org/10.1063/1.1736034
Si, N. T., Nhung, N. T. A., Bui, T. Q., Nguyen, M. T., & Nhat, P. V. (2021). Gold nanoclusters as prospective carriers and detectors of pramipexole. RSC Advances, 11(27), 16619–16632.
https://doi.org/10.1039/d1ra02172a
Si, N. T, Nhat, P. V, Duy, N. V. A, Trang N. T. B, Nhan T. T, Ben, N. C, Anh, N. T, Triet, D. M., Schall, P., & Dinh, V. A. (2024). Polaronic defect enhances optoelectronic and transport properties of blue phosphorene quantum dots using first-principles methods. Computational Materials Science, 241, 113020. https://doi.org/10.1016/j.commatsci.2024.113020
Swain, R. A., McVey, B. F. P., Virieux, H., Ferrari, F., Tison, Y., Martinez, H., Chaudret, B., Nayral, C., & Delpech, F. (2020). Sustainable quantum dot chemistry: Effects of precursor, solvent, and surface chemistry on the synthesis of Zn3P2 nanocrystals. Chemical Communications, 56(22), 3321–3324. https://doi.org/10.1039/c9cc09368k
Ta, L. T., Hamada, I., Morikawa, Y., & Dinh, V. A. (2021). Adsorption of toxic gases on borophene: Surface deformation links to chemisorptions. RSC Advances, 11(30), 18279–18287. https://doi.org/10.1039/d1ra02738g
Tang, J. Y., Shen, J. S., Chen, L., Jiang, J. W., Lu, J., Zhao, X., & Dai, G. L. (2018). Investigation of carbon monoxide catalytic oxidation on vanadium-embedded graphene. Monatshefte Fur Chemie, 149(8), 1349–1356. https://doi.org/10.1007/s00706-018-2181-3
Tessier, M. D., Spinicelli, P., Dupont, D., Patriarche, G., Ithurria, S., & Dubertret, B. (2014). Efficient exciton concentrators built from colloidal core/crown CdSe/CdS semiconductor nanoplatelets. Nano Letters, 14(1), 207–213. https://doi.org/10.1021/nl403746p
Tran, T. N, Dinh, V. A, Van, N. L, Luong, H. D, Pham, D. T, Truong, T. T, Nguyen, H. Q , Dao, Q. D,Tran, T. K. C, Bui, H. T., Nguyen, D. T, Dang, M. N, Phan, V. V. T, & Truong, Q. D. (2021). Novel (110) Double-Layered Guanidinium-Lead Iodide Perovskite Material: Crystal Structure, Electronic Structure, and Broad Luminescence. The Journal of Physical Chemistry C, 125(1), 964–972. https://doi.org/10.1021/acs.jpcc.0c08540
Vorontsov, A. V., & Tretyakov, E. V. (2018). Determination of graphene’s edge energy using hexagonal graphene quantum dots and PM7 method. Physical Chemistry Chemical Physics, 20(21), 14740–14752. https://doi.org/10.1039/c7cp08411k
Wan, Z., Wang, Q. De, Liu, D., & Liang, J. (2021). Effectively improving the accuracy of PBE functional in calculating the solid band gap via machine learning. Computational Materials Science, 198. https://doi.org/10.1016/j.commatsci.2021.110699