Nguyễn Việt Nhẫn Hòa , Nguyễn Dương Thanh Trúc , Nguyễn Anh Tú , Trương Thị Hồng Ái , Huỳnh Thị Cẩm Đào , Phạm Gia Mỹ , Nguyễn Quốc Châu Thanh , Lê Minh Nhân Trần Thanh Tuấn *

* Tác giả liên hệ (tttuan32@gmail.com)

Abstract

Betacyanin is an essential natural colorant to replace synthetic ones due to its durable, non-toxic properties and health-beneficial biological activities. In this study, betacyanin was extracted from dragon fruit peel (Hylocereus undatus) using ethanol and an ultrasonic treatment. The influence of parameters such as ethanol concentration, organic acid type and concentration, pH, temperature, time, and solid-liquid ratio on the extraction efficiency of betacyanin and their color stability in the extract were investigated. The results showed that the best condition for betacyanin extraction was 40% (v/v) ethanol, 0.005 mol/L ascorbic acid, pH 2, 1/20 g/mL solid-liquid ratio, at 40oC, and 20 minutes of ultrasonic time. Under the best extraction condition, the efficiency of betacyanin extraction was 0.472 mg/g and their color decomposition was less than 5% after 24 hours. The betacyanin extract showed antioxidant activity and toxicity to KB epidermoid cancer cells. Thus, with assisted ultrasound waves, betacyanin has been successfully extracted with high and stable extracting efficiency from dragon fruit peels. The dragon fruit peel can be a potential raw material for producing betacyanin, bringing high economic and environmental value.

Keywords: Ascorbic acid, betacyanin, dragon fruit peel, natural colorants, ultrasound-assisted extraction

Tóm tắt

Betacyanin là nhóm chất màu tự nhiên quan trọng dùng để thay thế chất màu tổng hợp do đặc tính bền, không độc hại và có nhiều hoạt tính sinh học có lợi cho sức khỏe. Trong nghiên cứu này, betacyanin từ vỏ quả thanh long ruột trắng (Hylocereus undatus) được chiết bằng ethanol và xử lý siêu âm. Ảnh hưởng của các thông số đến hiệu suất chiết và bền màu của betacyanin  đã được khảo sát. Kết quả cho thấy việc bổ sung các acid hữu cơ vào ethanol làm tăng đáng kể hiệu quả chiết và bền màu của betacyanin, trong đó ascorbic acid hiệu quả hơn citric acid. Điều kiện chiết tốt nhất đạt được là 40% (v/v) ethanol, 0,005 mol/L ascorbic acid, pH 2, 1/20 g/mL tỷ lệ rắn lỏng, 40oC, và 20 phút. Hiệu suất chiết betacyanin là  0,472 mg/g và sự phân hủy màu sau 24 giờ là nhỏ hơn 5%. Cao chiết chứa betacyanin có hoạt tính kháng oxi hóa và gây độc tế bào ung thư biểu bì KB. Như vậy, vỏ quả thanh long là nguồn nguyên liệu tiềm năng để sản xuất betacyanin, mang đến giá trị kinh tế và môi trường.

Từ khóa: Ascorbic acid, betacyanins, chất màu tự nhiên, chiết dung môi với hỗ trợ siêu âm, vỏ quả thanh long

Article Details

Tài liệu tham khảo

Al-Dhabi, N. A., Ponmurugan, K., Jeganathan, P. M. (2017). Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrasonics Sonochemistry, 34, 206-213. https://doi.org/10.1016/j.ultsonch.2016.05.005

Azeredo, H. (2009). betaxanthins: properties, sources, applications, and stability–a review. Food Science and Technology International, 44, 65–2376. https://doi.org/10.1111/j.1365-2621.2007.01668.x

Castro-Enríquez, D. D., Montaño-Leyva, B., Del Toro-Sánchez, C. L., Juaréz-Onofre, J. E., Carvajal-Millan, E., Burruel-Ibarra, S. E., Tapia-Hernández, J. A., Barreras-Urbina, C. G., & Rodríguez-Félix, F. (2020). Stabilization of betalains by encapsulation - a review. Journal of Food Science and Technology, 57, 1587-1600. https://doi.org/10.1007/s13197-019-04120-x

Calva-Estrada, S. J., Jimenez-Fernandez M., & Lugo-Cervantes, E. (2022). Betalains and their applications in food: The current state of processing, stability and future opportunities in the industry. Food Chemistry: Molecular Sciences, 4, 100089. https://doi.org/10.1016/j.fochms.2022.100089

Das, M., Saeid, A., Hossain, M. F., Jiang, G. H., Eun, J. B., & Ahmed, M. (2019). Influence
of extraction parameters and stability of betacyanins extracted from red amaranth
during storage. Journal of Food Science and Technology, 56(2), 643–653. https://doi.
org/10.1007/s13197-018-3519-x

Linh, Đ. T. M., Mai, N. T. Q., & Thùy, P. T. P. (2020). Tối ưu hóa quá trình tách chiết betacyanin từ vỏ quả thanh long (Hylocereus undatus) bằng phương pháp vi sóng. Tạp chí Khoa học Đại học Huế: Khoa học Tự nhiên, 129, 11–20.

Fathordoobady, F., Mirhosseini, H., Selamat, J., & Manap, M. Y. A. (2016). Effect of
solvent type and ratio on betacyanins and antioxidant activity of extracts from
Hylocereus polyrhizus flesh and peel by supercritical fluid extraction and solvent
extraction. Food Chemistry, 202, 70–80. https://doi.org/10.1016/j.foodchem.2016.01.121

Fresney, R. I. (1993). Culture of animalAnimal Cells (3rd ed.). John Wiley & Sons Inc., New York, USA.

Gengatharan, A., Dykes, G. A., & Choo, W. S. (2016). Stability of betacyanin from red
pitahaya (Hylocereus polyrhizus) and its potential application as a natural colourant
in milk. International Journal of Food Science and Technology, 51(2), 427–434. https://
doi.org/10.1111/ijfs.2016.51.issue210.1111/ijfs.12999

Hu, H., Yao, X., Qin, Y., Yong, H., & Liu, J. (2020). Development of multifunctional food
packaging by incorporating betalains from vegetable amaranth (Amaranthus tricolor
L.) into quaternary ammonium chitosan/fish gelatin blend films. International
Journal of Biological Macromolecules, 159
, 675–684. https://doi.org/10.1016/j.
ijbiomac.2020.05.103

Jimenez-Alvarado, R., Aguirre-Alvarez, G., Campos-Montiel, R. G., ContrerasEsquivel, J. C., Pinedo-Espinoza, J. M., Gonzalez-Aguayo, E., & Hernandez- Fuentes, A. D. (2015). Effect of High-Pulsed Electric Fields on the extraction yield and quality of juices obtained from the endocarp on nine prickly pear (Opuntia spp.) varieties. Jokull, 65(3), 414–435.

Kanatt, S. R. (2020). Development of active/intelligent food packaging film containing Amaranthus leaf extract for shelf life extension of chicken/fish during chilled storage. Food Packaging and Shelf Life, 24, 100506. https://doi.org/ 10.1016/j.fpsl.2020.100506

Khan, M. I., & Giridhar, P. (2014). Enhanced chemical stability, chromatic properties and regeneration of betalains in Rivina humilis L. berry juice. LWT - Food Science and Technology, 58(2), 649–657. https://doi.org/10.1016/j.lwt.2014.03.027

Kumar K., Srivastav S., & Sharanagat, V. S. (2021). Ultrasound-assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics Sonochemistry, 70, 105325. https://doi.org/10.1016/j.ultsonch.2020.105325

Maran, J. P., Priya, B. (2014). Ultrasound-assisted extraction of polysaccharide from Nephelium lappaceum L. fruit peel. International Journal of Biological Macromolecules, 70, 530-536. https://doi.org/10.1016/j.ijbiomac.2014.07.032

Marxen, K., Vanselow, K. H., Lippemeier, S., Hintze, R., Ruser, A., & Hansen, U. (2007). Determination of DPPH Radical Oxidation Caused by Methanolic Extracts of Some Microalgal Species by Linear Regression Analysis of Spectrophotometric Measurements. Sensors, 7(10), 2080–2095. https://doi.org/10.3390/s7102080

Moure, A., Franco, D., Sinerio, J., Domínguez, H., Núñez, M. J., Lema, J. M. (2000). Evaluation of extracts from Gevuina avellana hulls as antioxidants. Journal of Agricultural and Food Chemistry, 48, 3890–3897. https://doi.org/10.1021/jf000048w

Naczk, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food. Journal of Chromatography A, 1054(1–2), 95-111. https://doi.org/10.1016/j.chroma.2004.08.059

Otalora, M. C., de Jesús Barbosa, H., Perilla, J. E., Osorio, C., & Nazareno, M. A. (2019). Encapsulated betalains (Opuntia ficus-indica) as natural colorants. Case study: Gummy candies. LWT, 103, 222-227. https://doi.org/10.1016/j.lwt.2018.12.074

Prakash-Maran, J., Manikandan, S., & Mekala, V. (2013). Modeling and optimization of
betalain extraction from Opuntia ficus-indica using Box-Behnken design with
desirability function. Industrial Crops and Products, 49, 304–311. https://doi.org/
10.1016/j.indcrop.2013.05.012

Qin, Y., Liu, Y., Zhang, X., & Liu, J. (2020). Development of active and intelligent packaging by incorporating betalains from red pitaya (Hylocereus polyrhizus) peel into starch/polyvinyl alcohol films. Food Hydrocolloids, 100, 105410. https://doi.org/10.1016/j.foodhyd.2019.105410

Ramadan, M.F., & Mörsel, J. T. (2003). Recovered lipids from prickly pear [Opuntia ficus-indica (L.) Mill] peel: a good source of polyunsaturated fatty acids, natural antioxidant vitamins, and sterols. Food Chemistry, 83(3), 447-456. https://doi.org/10.1016/S0308-8146(03)00128-6

Ramli, N. S., Ismail, P., & Rahmat, A. (2014). Influence of conventional and ultrasonic-assisted extraction on phenolic contents, betacyanin contents, and antioxidant capacity of red dragon fruit (Hylocereus polyrhizus). The Scientific World Journal,
2014
, 1-7. https://doi.org/10.1155/2014/964731

Sanchez-Gonzalez, N., Jaime-Fonseca, M. R., San Martin-Martinez, E., & Zepeda, L. G.
(2013). Extraction, stability, and separation of betalains from Opuntia joconostle cv.
using response surface methodology. Journal of Agricultural and Food Chemistry, 61
(49), 11995–12004. https://doi.org/10.1021/jf401705h

Scudiero, D. A., Shoemaker, R. H., Kenneth, D. P., Monks, A., Tierney, S., Nofziger, T. H., Currens, M. J., Seniff, D., Boyd, M. R. (1988). Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Research, 48, 4827-4833.

Singh, T., Pandey, V. K., Dash, K. K., Zanwar, S., & Singh, R. (2023). Natural bio-colorant and pigments: Sources and applications in food processing. Journal of Agriculture and Food Research, 12, 100628 https://doi.org/10.1016/j.jafr.2023.100628

Sivakumar, V., Anna, J. L., Vijayeeswarri, J., Swaminathan, G. 2009. Ultrasound-assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather. Ultrasonics Sonochemistry, 116, 782-789. https://doi.org/10.1016/j.ultsonch.2009.03.009

Slimen, I. B., Najar, T., & Abderrabba, M. (2017). Chemical and antioxidant properties of betalains. Journal of Agricultural and Food Chemistry, 65(4), 675–689. https://doi.org/10.1021/acs.jafc.6b04208

Silva, D. V. T., Baião, D. S., Ferreira, V. F., Paschoal, V. M. F. (2022). Betanin as a multipath oxidative stress and inflammation modulator: a beetroot pigment with protective effects on cardiovascular disease pathogenesis. Critical Reviews in Food Science and Nutrition, 62(2), 539-554. https://doi.org/10.1080/10408398.2020.1822277

Sinko, P. J. (2006). Martin's Physical Pharmacy and Pharmaceutical Sciences (6th ed.): Ionic Equilibria (pp. 161–185). Lippincott Williams & Wilkins (LWW), New York, USA.

Silva, J. P. P., Bolanho, B. C., Stevanato, N., Massa, T. B., & da Silva, C. (2020).
Ultrasound-assisted extraction of red beet pigments (Beta vulgaris L.): Influence of
operational parameters and kinetic modeling. Journal of Food Processing and
Preservation
, June, 44(10), e14762. https://doi.org/10.1111/jfpp.14762.e14762

Thirugnanasambandham, K., Sivakumar, V. (2017). Microwave-assisted extraction process of betalain from dragon fruit and its antioxidant activities. Journal of the Saudi Society of Agricultural Sciences, 16(1), 41-48. https://doi.org/10.1016/j.jssas.2015.02.001

Tran, T. M. T., & Do, V. Q. (2019). Studies on betalains chemistry from the Vietnamese red dragon fruits (Hylocereus polyrhizus) by LC-ESI-MS/MS. CTU Journal of Innovation and Sustainable Development, 11(1), 87-94. https://doi.org/10.22144/ctu.jen.2019.012

Tripathi, M., Diwan, D., Shukla, A.C., Gaffey, J., Pathak, N., Dashora, K., Pandey, A., Sharma, M., Guleria, S., Varjani, S., Nguyen, Q. D., & Gupta, V. K. 2023. Valorization of dragon fruit waste to value-added bioproducts and formulations: A review. Critical Reviews in Biotechnology. https://doi.org/10.1080/07388551.2023.2254930

Zin, M. M., Marki, E., & Banvolgyi, S. (2020). Conventional extraction of betalain compounds from beetroot peels with aqueous ethanol solvent. Acta Alimentaria, 49(2), 163–169. https://doi.org/10.1556/066.2020.49.2.5