Ảnh hưởng của phương pháp trích ly đến hoạt tính chống oxy hóa của cao chiết từ vỏ quả của bốn giống cam
Abstract
The study was aimed to compare the yield, the content of total polyphenol (TPC), flavonoids (TFC) and antioxidant activity of extracts from three green orange cultivars (cv. Sanh, Xoan and Mat) and Navel cultivar by soaking and Soxhlet method. The antioxidant activity of the extract was determined by DPPH, ABTS, FRAP and RP assays. The results showed that the yield of extracts by Soxhlet method was higher than that of the soaking method in four orange cultivars. The extract from Sanh cultivar by Soxhlet method was the highest yield (15.1%) followed by the extract from Sanh cultivar (11.1%). However, TPC and TFC of the extracts by Soxhlet method were lower than soaking method, ranging from 25.8 – 46.7 mg GAE/g and 16.5 – 30.5 mg QE/g, respectively. The extracts by soaking method had higher antioxidant activity than Soxhlet method. The extract from Xoan cultivar by soaking and Soxhlet method had the highest TPC and TFC content but the extract using the soaking method had the highest antioxidant activity. In summary, Soxhlet method had a higher yield but lower antioxidant activity than soaking method.
Tóm tắt
Nghiên cứu được thực hiện nhằm so sánh hiệu suất thu hồi, hàm lượng polyphenol tổng số (TPC), flavonoid tổng số (TFC) và khả năng chống oxy hóa của cao chiết từ ba giống cam vỏ xanh (cam Sành, Xoàn và Mật) và giống cam Navel bằng phương pháp chiết ngâm dầm và Soxhlet. Khả năng chống oxy hóa được xác định bằng thử nghiệm DPPH, ABTS, FRAP và RP. Kết quả, hiệu suất thu hồi cao chiết bằng Soxhlet cao hơn ngâm dầm ở bốn giống cam. Cao chiết cam Sành bằng Soxhlet có hiệu suất cao nhất (15,1%) theo sau là cao chiết cam Xoàn (11,1%). Tuy nhiên, TPC và TFC của cao chiết bằng Soxhlet thấp hơn ngâm dầm, lần lượt là 25,8 – 46,7 mg GAE/g và 16,5 – 30,5 mg QE/g. Cao chiết ngâm dầm có khả năng chống oxy hóa ở các thử nghiệm cao hơn Soxhlet. Cao chiết cam Xoàn bằng ngâm dầm và Soxhlet có hàm lượng TPC và TFC cao nhất nhưng cao chiết ngâm dầm có khả năng chống oxy hóa cao nhất. Tóm lại, Soxhlet có hiệu suất thu hồi cao nhưng khả năng chống oxy hóa thấp hơn ngâm dầm.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Anh, V. T. T., Trang, D. T. X., Kamei, K., Linh, T. C., Pham-Khanh, N. H., Tuan, N. T., & Danh, L. T. (2021). Phytochemicals, Antioxidant and Antidiabetic Activities of Extracts from Miliusa velutina Flowers. Horticulturae, 7(12), 555. https://doi.org/10.3390/horticulturae7120555
Chang, H. C., Huang, G. J., Agrawal, D. C., Kuo, C. L., Wu, C. R., & Tsay, H. S. (2007). Antioxidant activities and polyphenol contents of six folk medicinal ferns used as “Gusuibu.” Botanical Studies, 48(4), 397–406.
Contini, C., Álvarez, R., O’Sullivan, M., Dowling, D. P., Gargan, S. Ó., & Monahan, F. J. (2014). Effect of an active packaging with citrus extract on lipid oxidation and sensory quality of cooked turkey meat. Meat Science, 96(3), 1171–1176. https://doi.org/10.1016/j.meatsci.2013.11.007
Cục Trồng trọt (2019). Hiện trạng và định hướng phát triển bền vững cây ăn quả các tỉnh phía Nam. Hội nghị Thúc đẩy phát triển bền vững cây ăn quả, Long An 3/2019: 1-19.
Diab, K. A. E., Shafik, R. E., & Yasuda, S. (2015). In Vitro Antioxidant and Antiproliferative Activities of Novel Orange Peel Extract and It’s Fractions on Leukemia HL-60 Cells. Asian Pacific Journal of Cancer Prevention, 16(16), 7053–7060. https://doi.org/10.7314/APJCP.2015.16.16.7053
Duong, C. T., Thao, H. T. P., Y, N. T. N., Tien, D. T. K., Nga, N. T. T., Nhan, T. C., Huong, B. T. C., Ercisli, S., Truc, N. T. N., & Danh, L. T. (2023). Application of Essential Oils Extracted from Peel Wastes of Four Orange Varieties to Control Anthracnose Caused by Colletotrichum scovillei and Colletotrichum gloeosporioides on Mangoes. Plants, 12(15), 2761. https://doi.org/10.3390/plants12152761
Hegazy, A. E., & Ibrahium, M. I. (2012). Antioxidant activities of orange peel extracts. World Applied Sciences Journal, 18(5), 684–688. https://doi.org/10.5829/idosi.wasj.2012.18.05.64179
Huang, Y.-S., & Ho, S.-C. (2010). Polymethoxy flavones are responsible for the anti-inflammatory activity of citrus fruit peel. Food Chemistry, 119(3), 868–873. https://doi.org/10.1016/j.foodchem.2009.09.092
Karadeniz, F., Burdurlu, H. S., Koca, N., & Soyer, Y. (2005). Antioxidant activity of selected fruits and vegetables grown in Turkey. Turkish Journal of Agriculture and Forestry, 29(4), 297–303. https://doi.org/10.3906/tar-0409-12
Kondo, S., Tsuda, K., Muto, N., & Ueda, J. (2002). Antioxidative activity of apple skin or flesh extracts associated with fruit development on selected apple cultivars. Scientia Horticulturae, 96(1–4), 177–185. https://doi.org/10.1016/S0304-4238(02)00127-9
Kusrini, E., Mawarni, D., Mamat, M., Prasetyanto, E., & Usman, A. (2018). Comparison of Antibacterial Activity in Ethanol Extract and Essential Oil of Citrus sinensis (L.) Peels Obtained by Sohxlet and Distillation Methods. IOP Conference Series: Materials Science and Engineering, 440(1), 012028. https://doi.org/10.1088/1757-899X/440/1/012028
Lai, C., Liang, Y., Zhang, L., Huang, J., Kaliaperumal, K., Jiang, Y., & Zhang, J. (2022). Variations of Bioactive Phytochemicals and Antioxidant Capacity of Navel Orange Peel in Response to Different Drying Methods. Antioxidants, 11(8), 1543. https://doi.org/10.3390/antiox11081543
Lawal, D., Bala, J. A., Aliyu, S. Y., & Huguma, M. A. (2013). Phytochemical Screening and In Vitro Anti-Bacterial Studies of the Ethanolic Extract of Citrus Senensis (Linn.) Peel against some Clinical Bacterial Isolates. International Journal of Innovation and Applied Studies, 2(2), 138–145.
Li, B. B., Smith, B., & Hossain, M. M. (2006). Extraction of phenolics from citrus peels. Separation and Purification Technology, 48(2), 182–188. https://doi.org/10.1016/j.seppur.2005.07.005
Liew, S. S., Ho, W. Y., Yeap, S. K., & Sharifudin, S. A. Bin. (2018). Phytochemical composition and in vitro antioxidant activities of Citrus sinensis peel extracts. PeerJ, 6(8), e5331. https://doi.org/10.7717/peerj.5331
Mohamad, M., Ali, M. W., & Ahmad, A. (2010). Modelling for Extraction of Major Phytochemical Components from Eurycoma longifolia. Journal of Applied Sciences, 10(21), 2572–2577. https://doi.org/10.3923/jas.2010.2572.2577
Mostafa, R., & Essawy, H. (2021). Screening and Quantification of Bioactive Compounds and Antimicrobial Activities of Fresh Juice, Methanolic Peel and Pulp Extract of Citrus sinensis L. (Sweet Orange). Egyptian Academic Journal of Biological Sciences, G. Microbiology, 13(2), 1–10. https://doi.org/10.21608/eajbsg.2021.189671
Nayak, B., Dahmoune, F., Moussi, K., Remini, H., Dairi, S., Aoun, O., & Khodir, M. (2015). Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels. Food Chemistry, 187, 507–516. https://doi.org/10.1016/j.foodchem.2015.04.081
Niawanti, H., Lewar, Y. S., & Octavia, N. N. (2019). Effect of Extraction Time on Averrhoa bilimbi Leaf Ethanolic Extracts Using Soxhlet Apparatus. IOP Conference Series: Materials Science and Engineering, 543(1), 012018. https://doi.org/10.1088/1757-899X/543/1/012018
Putnik, P., Barba, F. J., Španić, I., Zorić, Z., Dragović-Uzelac, V., & Bursać Kovačević, D. (2017). Green extraction approach for the recovery of polyphenols from Croatian olive leaves (Olea europea). Food and Bioproducts Processing, 106, 19–28. https://doi.org/10.1016/j.fbp.2017.08.004
Sandhya, T., & Sree Mahalakshmi, P. (2020). Evaluation of In-Vitro and In-Vivo Anticoagulant Activity of Orange Peel Extract. Acta Scientific Pharmaceutical Sciences, 4(10), 56–66. https://doi.org/10.31080/ASPS.2020.04.0598
Sharma, K., Mahato, N., Cho, M. H., & Lee, Y. R. (2017). Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition, 34, 29–46. https://doi.org/10.1016/j.nut.2016.09.006
Shehata, M. G., Awad, T. S., Asker, D., El Sohaimy, S. A., Abd El- Aziz, N. M., & Youssef, M. M. (2021). Antioxidant and antimicrobial activities and UPLC-ESI-MS/MS polyphenolic profile of sweet orange peel extracts. Current Research in Food Science, 4(December 2020), 326–335. https://doi.org/10.1016/j.crfs.2021.05.001
Shetty, S. B., Mahin-Syed-Ismail, P., Varghese, S., Thomas-George, B., Kandathil-Thajuraj, P., Baby, D., Haleem, S., Sreedhar, S., & Devang-Divakar, D. (2016). Antimicrobial effects of Citrus sinensis peel extracts against dental caries bacteria: An in vitro study. Journal of Clinical and Experimental Dentistry, 8(1), e71–e77. https://doi.org/10.4317/jced.52493
Singh, B., Singh, J. P., Kaur, A., & Singh, N. (2020). Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Research International, 132(February), 109114. https://doi.org/10.1016/j.foodres.2020.109114
Spigno, G., Tramelli, L., & De Faveri, D. M. (2007). Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering, 81(1), 200–208. https://doi.org/10.1016/j.jfoodeng.2006.10.021
Sultana, B., Anwar, F., & Przybylski, R. (2007). Antioxidant potential of corncob extracts for stabilization of corn oil subjected to microwave heating. Food Chemistry, 104(3), 997–1005. https://doi.org/10.1016/j.foodchem.2006.12.061
Tzanova, M., Atanasov, V., Yaneva, Z., Ivanova, D., & Dinev, T. (2020). Selectivity of Current Extraction Techniques for Flavonoids from Plant Materials. Processes, 8(10), 1222. https://doi.org/10.3390/pr8101222
Yohanes, R., Geremew, T., Tafese, T., & Endale Annisa, M. (2023). Antibacterial and antioxidant activity of compounds from Citrus sinensis peels and in silico molecular docking study. International Journal of Secondary Metabolite, 10(3), 437–458. https://doi.org/10.21448/ijsm.1180610
Zahoor, S., Anwar, F., Mehmood, T., Sultana, B., & Qadir, R. (2016). Variation in antioxidant attributes and individual phenolics of citrus fruit peels in relation to different species and extraction solvents. Journal of the Chilean Chemical Society, 61(2), 2884–2889. https://doi.org/10.4067/S0717-97072016000200007