Nghiên cứu tách chiết protein thủy phân từ gelatin da cá rô phi (Oreochromis niloticus) bằng enzyme Thermoase GL30
Abstract
Research on the extraction of protein hydrolysate from tilapia fish skin gelatin was investigated to determine the production process for the gelatin hydrolysis by Thermoase GL30 enzyme to obtain the highest quality of protein hydrolysate. Gelatin powder was hydrolyzed with 0.3% Thermoase GL30 enzyme at 60oC for 1 hour to collect the protein hydrolysate products with viscosity, recovery yield, and color were 16.8 mPa.s; 96.4% and L*= 93.1, respectively. The protein hydrolysate from tilapia fish skin had hydrophobic amino acid of 596 residue/1.000 residues and showed a correlation with the highest antioxidant activity (DPPH) 73.2%. Besides, FTIR spectra showed a close relationship between wavelength numbers in the amide I and amide III regions, especially the stability of the triple helix structure. The results showed that tilapia fish skin could be used to produce high quality hydrolyzed protein.
Tóm tắt
Nghiên cứu tách chiết protein thủy phân từ gelatin da cá rô phi được thực hiện nhằm xác định chế độ thủy phân gelatin bằng enzyme Thermoase GL30 để thu được protein thủy phân có chất lượng tốt. Bột gelatin được thủy phân bằng enzyme Thermoase GL30 nồng độ 0,3% ở 60°C trong 1 giờ, protein thủy phân thu được có độ nhớt, hiệu suất thu hồi và độ sáng lần lượt là 16,8 mPa.s; 96,4% và L*= 93,1. Protein thủy phân từ gelatin da cá rô phi có hàm lượng amino acid kỵ nước là 596 đơn vị/1.000 đơn vị tương ứng với hoạt tính chống oxy hóa (DPPH) 73,2%. Bên cạnh đó, phổ FTIR cho thấy mối quan hệ chặt chẽ giữa số bước sóng trong vùng amide I và vùng amide III đặc biệt là sự ổn định của cấu trúc xoắn bậc ba. Kết quả nghiên cứu cho thấy có thể tận dụng da cá rô phi để sản xuất protein thủy phân chất lượng cao.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Ahmad, M., & Benjakul, S. (2011). Charateristics of gelatin from the skin of unicorn leatherjacket (Aluterus monoceros) as influenced by acid pretrement and extraction time. Food Hydrocolloids, 25, 381-388. https://doi.org/10.1016/j.foodhyd.2010.07.004
Alemán, A., Giménez, B., Montero, P., & Gómez-Guillén, M. C. (2011). Antioxidant activity of several marine skin gelatins. LWT-Food Science and Technology, 44(2), 407-413.
https://doi.org/10.1016/j.lwt.2010.09.003
Amano enzyme Nhật Bản. (2023). Thermoase GL30. Truy cập ngày 25/7/2023. Địa chỉ truy cập: http://www.amano-enzyme.co.jp/.
AOAC. (2000). Official Methods of Analysis. Association of offical analytical chemists Arlington.
Benjakul, S., Karnjanapratum, S., & Visessanguan, W. (2017). Production and Characterization of Odorless Antioxidative Hydrolyzed Collagen from Seabass (Lates calcarifer) Skin Without Descaling. Waste and Biomass Valorization, 9(4), 549-559.
https://doi.org/10.1007/s12649-017-0008-9
Bigi, A., Panzavolta, S., & Rubini, K. (2004). Relationship between triple-helix content and mechanical properties of gelatin films. Biomaterials, 25(25), 5675-5680. https://doi.org/10.1016/j.biomaterials.2004.01.033
Chalamaiah, M., Hemalatha, R., & Jyothirmayi, T. (2012). Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chemistry, 135(4), 3020-3038. https://doi.org/10.1016/j.foodchem.2012.06.100
Etemadian, Y., Ghaemi, V., Shaviklo, A.R., Pourashouri, P., Sadeghi Mahoonak, A.R. and Rafipour, F. (2021). Development of animal/ plantbased protein hydrolysate and its application in food, feed and nutraceutical industries: state of the art. Journal of Cleaner Production, 278, 123219. https://doi.org/10.1016/j.jclepro.2020.123219
Huynh, N. N. N. (2022). The research on the hydrolyzed collagen extraction from tilapia (Oreochromis niloticus) skin by Alcalase enzyme. The university graduation thesis in seafood science and technology. College of Aquaculture and fisheries. Can Tho University (in Vietnamese).
Jamilah, B. Umi Hartina, M. R. Mat Hashim, D., & Sazilli, A. Q. (2013). Properties of collagen from barramundi (Late calcarifer) skin. International Food Research Journal, 20, 835-842.
Jamilah, B., Tan, K. W., Umi Hartina, M. R., & Azizah, A. (2011). Gelatins from three cultured freshwater fish skins obtained by liming process. Food Hydrocolloids, 25(5), 1256-1260. https://doi.org/10.1016/j.foodhyd.2010.11.023
Jridi, M., Lassoued, I., Nasri, R., Ayadi, M. A., Nasri, M., & Souissi, N. (2014). Characterization and potential use of cuttlefish skin gelatin hydrolysates perpared by different microbial proteases. BioMed Research International, 1(14), 10-1155. https://doi.org/10.1155/2014/461728
Kristinsson, H. G., & Rasco, B. A. (2000). Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. Journal of Agricultural and Food Chemistry, 48(3), 657-666.
https://doi.org/10.1021/jf990447v
Le, T. T. M., & Nguyen, T. V. (2019). The effect of treatment method and extraction condition on the quality of gelatin from tra catfish skin (Pangasianodon hypophthalamus). Journal of Fisheries Science and Technology, 4, 130-138 (in Vietnamese). https://doi.org/10.53818/jfst.04.2019.400
Le, T. T. M., Truong, T. T. M., & Tran, T. T. (2023). Production of protein hydrolysate product from salmon (Salmo salar) skin by enzyme alcalase. Vietnam Journal of Agriculture & Rural Development, 1, 344-352 (in Vietnamese). https://doi.org/10.53818/jfst.04.2019.400
Li, J., Wang, M., Qiao, Y., Tian, Y., Liu, J., Qin, S., & Wu, W. (2018). Extraction and characterization of type I collagen from skin of tilapia (Oreochromis niloticus) and its potential application in biomedical scaffold material for tissue engineering. Process Biochemistry, 74,156-163. https://doi.org/10.1016/j.procbio.2018.07.009
Liua, F., Liu, C. E., Lorena, D., Zhang, X., & Fu, Z. (2012). Evaluation of the antioxidant activity of collagen peptide additive extracted from cod skin. Journal of Environmental Protection and Ecology, 13(3 A), 1836-1841.
Mendis, E., Rajapakse, N., & Kim, S. K. (2005). Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. Journal of Agricultural and Food Chemistry, 53(3), 581-587.
https://doi.org/10.1021/jf048877v
Molla, A. E., & Hovannisyan, H. G. (2011). Optimization of enzymatic hydrolysis of visceral waste proteins of beluga Huso huso using Protamex. International Aquatic Research, 3(2), 93-99.
Muyonga, J.H., Cole, C. G. B., & Duodu, K. G. (2004). Characterisation of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus). Food Chemistry, 85(1), 81-89. https://doi.org/10.1016/j.foodchem.2003.06.006
Nguyen, B. C., & Tran, K. P. (2019). The removal of non-collagen composition in yellowfin tuna skin by NaOH solution. Journal of Sciences Technology & Food, 19(1), 114-124 (in Vietnamese).
Nguyen, H. T. M., Sylla, K. S. B., Randriamahatody, Z., Donnay-Moreno, C., Moreau, J., Tran, L. T., & Bergé, J. P. (2011). Enzymatic hydrolysis of yellowfin tuna (Thunnus albacares) by-products using Protamex protease. Food Technology and Biotechnology, 49(1), 48-55.
Nguyen, T. V., & Le, T. T. M. (2022). Extraction of hydrolyzed collagen from snakehead fish skin (Channa striata) by using organic acid and Alcalase. Vietnam Journal of Agriculture & Rural Development, 14, 61-68 https://doi.org/10.58902/tcnckhpt.v2i3.72
Nilsuwan, K., Chantakun, K., Chotphruethipong, L., & Benjakul, S. (2021). Development of hydrolysis and defatting processes for production of lowered fishy odor hydrolyzed collagen from fatty skin of sockeye salmon (Oncorhynchus nerka). Foods, 10(10), 22-57. https://doi.org/10.3390/foods10102257
Nolse, H., & Undeland, I. (2009). The acid and alkaline solubilization process for the isolation of muscle proteins: state of the art. Food and Bioprocess Technology, 2, 1-27. https://doi.org/10.1007/s11947-008-0088-4
Nurilmala, M., Hizbullah, H. H., Karnia, E., Kusumaningtyas, E., & Ochiai, Y. (2020). Characterization and antioxidant activity of collagen, gelatin, and the derived peptides from yellowfin tuna (Thunnus albacares) skin. Marine Drugs, 18(98), 1-12. https://doi.org/10.3390/md18020098
Pasupuleti, V. K., Holmes, C., & Demain, A. L. (2010). Applications of protein hydrolysates in biotechnology. Springer Netherlands. https://doi.org/10.1007/978-1-4020-6674-0
Pezeshk, S., Ojagh, S. M., Rezaei, M., & Shabanpour, B. (2019). Fractionation of protein hydrolysates of fish waste using membrane ultrafiltration: Investigation of antibacterial and antioxidant activities. Probiotics and Antimicrobial Proteins, 11(3), 1015-1022. https://doi.org/10.1007/s12602-018-9483-y
Prabu, E., Rajagopalsamy, C. B. T., Ahilan, B., Jeevagan, I. J. M. A., & Renuhadevi, M. (2019). Tilapia - an excellent candidate species for world aquaculture: A review. Annual Research & Review in Biology, 31, 1-14. https://doi.org/10.9734/arrb/2019/v31i330052
Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62(3), 597-635. https://doi.org/10.1128/MMBR.62.3.597-635.1998
Sae-leaw, T., & Benjakul, S. (2015). Physico-chemical properties and fishyodour of gelatin from seabass (Lates calcarifer) skin stored in ice. Food Bioscience, 10, 59-68. https://doi.org/10.1016/j.fbio.2015.02.002
Sae-leaw, T., Benjakul, S., & O'Brien, N. M. (2016). Effects of defatting and tannic acid incorporation during extraction on properties and fishy odour of gelatin from seabass skin. LWT-Food Science and Technology, 65, 661-667. https://doi.org/10.1016/j.lwt.2015.08.060
Tekle, S., Bozkurt, F., Akman, P. K., & Sagdic, O. (2022). Bioactive and Functional properties of gelatin peptide fractions obtained from sea bass (Dicentrarchus labrax) skin. Food Science and Technology, 42, 60-221. https://doi.org/10.1590/fst.60221
Thuy, L. T. M., Muoi, N, V., Truc, T. T., Takahashi, K., & Osako, K. (2020). Comparison of acid‐soluble collagen characteristic from three important freshwater fish skins in Mekong Delta Region, Vietnam. Journal of Food Biochemistry, 44(9), 13397. https://doi.org/10.1111/jfbc.13397
Thuy, L. T. M., Okazaki., E., & Osako, K. (2014). Isolation and characterization of acid – soluble collagen from the scales of marine fishes from Japan and Viet Nam. Food Chemistry, 149, 264-270. https://doi.org/10.1016/j.foodchem.2013.10.094
Thuy, L. T. M., Thanh, N. V., & Truc, T. T. (2022). The changing of gelatin properties from tra catfish skin (Pangasianodon hypophthalamus) by alkaline replacement to enzyme in pretreated process. Ciência Rual, 52(9), e202-10519. https://doi.org/10.1590/0103-8478cr20210519
Tinrat, S., & Sila-Asna, M. (2017). Optimization of Gelatin Extraction and Physico-Chemical Properties of Fish Skin and Bone Gelatin: Its Application to Panna Cotta Formulas. Current Research in Nutrition and Food Science, 5(3), 263-273. https://doi.org/10.12944/CRNFSJ.5.3.11
Tkaczewska, J., Borawska-Dziadkiewicz, J., Kulawik, P., Duda, I., Morawska, M., & Mickowska, B. (2020). The effects of hydrolysis condition on the antioxidant activity of protein hydrolysate from Cyprinus carpio skin gelatin. LWT - Food Science and Technology, 117, 108616. https://doi.org/10.1016/j.lwt.2019.108616
Tran, A. K., Nguyen, T. H., Nguyen, V. K. H., Nguyen, L. T. H., & Pham, C. K. (2017). Study of Hydrolysis Conditions of Salmon Waste to Collect Antioxidant Peptides. VNU Journal of Science. Natural Sciences and Technology, 33(1S), 7-13 (in Vietnamese).
Tran, L. T., Đo, P. M., & Nguyen, T. A. (2006). Production of technical and medical products from aquatic waste. Agricultural Publishing House, 162 trang (in Vietnamese).
Truong, T. T. M., Le, T. T. M., Nguyen, M, V., & Tran, T. T. (2022). Effects of enzyme concentration and hydrolysis time on the recovery of fish protein hydrolysate from snakehead (Channa striata) head by using different proteases. Can Tho University Journal of Science, 58(4), 78-86 (in Vietnamese). https://doi.org/10.22144/ctu.jvn.2022.166
Truong, T. T. M., Nguyen, Q. Đ., Tran, T. T., & Le, T. T. M. (2021). The study of the pre-treatment and collagen extraction conditions from snakehead fish (Channa striata) skin by using pepsin. Can Tho University Journal of Science, 57 (6), 178-188 (in Vietnamese). https://doi.org/10.22144/ctu.jvn.2021.185
Ung, T. M. A. (2019). Study on hydrolysis of protein obtained from Alcalase enzyme. Vietnam Journal of Nutrition & Food, 15(4), 63-72 (in Vietnamese).
Vietfish Magazine. (2022). Solving the problem of tilapia seed quality, accessed 28/7/2023. Adress: https://thuysanvietnam.com.vn/giai-bai-toan-chat-luong-giong-ca-ro-phi/.
Vietnam Agriculture. (2019). Vietnamese tilapia “swims” to the word. https://nongnghiep.vn/ca-ro-phi-viet-nam-boi-ra-the-gioi-d239663.html.
Wasswa, J., Tang, J., Gu, X. H., &Yu an, X. Q. (2007). Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysate from grass carp (Ctenopharyngodon idella) skin. Food Chemistry, 104(4), 1698-1704. https://doi.org/10.1016/j.foodchem.2007.03.044
Wu, H. C., Shiau, C. Y., Chen, H. M. & Chiou, T. K. (2003). Antioxidant activities of carnosine, anserine, some free amino acids their combination. Journal of Food Research International, 48(2), 435-153. https://doi.org/10.1016/j.foodres.2012.04.013
Xu, N., Chen, G., & Liu, H. (2017). Antioxidative categorization of twenty amino acids based on experimental evaluation. Molecules, 22(12), 2066. https://doi.org/10.3390/molecules22122066
Zhang, Y., Dutilleul, P., Li, C., & Simpson, B. K. (2019). Alcalase-assisted production of fish skin gelatin rich in high molecular weight (HMW) polypeptide chains and their characterization for film forming capacity. Lwt- Food Science and Technology, 110, 117-125. https://doi.org/10.1016/j.lwt.2018.12.012