Nguyễn Khánh Thuận * , Trần Thị Lệ Triệu Lý Thị Liên Khai

* Tác giả liên hệ (nkthuan@ctu.edu.vn)

Abstract

A total of 252 pork and environmental samples were collected at slaughterhouses, the contamination of Staphylococcus aureus was recorded at 16.67% on pork samples and 39.06% on environmental samples. The prevalence of S. aureus on pork and the environment samples between small-scale and centralized slaughterhouses were not statistically different. The average contamination density of S. aureus on pork was 7x101CFU/g at small-scale slaughterhouses and 3x101CFU/g at centralized slaughterhouses. The isolated S. aureus were examined for antimicrobial susceptibility. The results showed that they were sensitive to several examined antibiotics but were highly resistant to colistin (73.68%), ceftazidime (57.89%), and tetracycline (52.63%). There was the presence of a number of antibiotic resistance genes in the collected S. aureus strains, of which the tetA gene accounted for the highest proportion (26.58%). The study results showed a high prevalence of S. aureus resistant to antibiotics in slaughterhouses, which has been a risk to consumer health.

Keywords: An Giang, antibiotic resistance, pork, slaughterhouse, Staphylococcus

Tóm tắt

Tổng số 252 mẫu thịt heo và môi trường được thu thập tại các lò mổ, ghi nhận tỷ lệ hiện diện của Staphylococcus aureus trên mẫu thịt là 16,67% và trên mẫu môi trường là 39,06%. Tỷ lệ vấy nhiễm S. aureus trên mẫu thịt và môi trường giữa các cơ sở nhỏ lẻ và tập trung không có sự khác biệt có ý nghĩa thống kê. Mật độ vấy nhiễm trung bình của S. aureus trên mẫu thịt là 7x101CFU/g tại cơ sở nhỏ lẻ và 3x101CFU/g tại cơ sở tập trung. Các chủng S. aureus phân lập được kiểm tra sự nhạy cảm với kháng sinh. Kết quả cho thấy, các chủng này còn nhạy cảm với nhiều loại kháng sinh nhưng đã đề kháng cao với colistin (73,68%), ceftazidime (57,89%) và tetracycline (52,63%). Có sự hiện diện của một số gene mã hóa đề kháng kháng sinh trên các chủng S. aureus thu thập, trong đó, gene tetA chiếm tỷ lệ cao nhất (26,58%). Kết quả nghiên cứu cho thấy sự hiện diện cao của các chủng S. aureus đề kháng kháng sinh tại các cơ sở giết mổ là mối nguy cơ đối với sức khoẻ người tiêu dùng.

Từ khóa: An Giang, cơ sở giết mổ, đề kháng kháng sinh, thịt heo, Staphylococcus

Article Details

Tài liệu tham khảo

Abdelgader, S. A., Shi, D., Chen, M., Zhang, L., A. Hejair, H. M., Muhammad, U., Yao, H., & Zhang, W. (2018). Antibiotics resistance genes screening and comparative genomics analysis of commensal Escherichia coli isolated from poultry farms between China and Sudan. BioMed Research International, 2018(1), 5327450. https://doi.org/10.1155/2018/5327450.

Adikwu, A. A., Okolocha, E. C., Luga, I. I., & Ngbede, E. O. (2019). Microbial hazards associated with pig carcasses and molecular detection of enterotoxigenic Staphylococcus aureus at different stages of the slaughter process. Sokoto Journal of Veterinary Sciences, 17(1), 27-37. https://doi.org/10.4314/sokjvs.v17i1.4

Bae, D., Macoy, D. M., Ahmad, W., Peseth, S., Kim, B., Chon, J., Ryu, G. R., Ban, G., Kim, S. A., Kang, H. J., Moon, J. S., & Kim, M. G. (2022). Distribution and characterization of antimicrobial resistant pathogens in a pig farm, slaughterhouse, meat processing plant, and in retail stores. Microorganisms, 10(11), 2252. https://doi.org/10.3390/microorganisms10112252

Bauer, A. W, Kirby, W. M. M, Sherris, J. C, & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45, 493-496. https://doi.org/10.1093/ajcp/45.4_ts.493

Bergenstrahle, K. (2015). Characterization of coagulase positive Staphylococci from beef carcasses from Swedish slaughterhouses (Master thesis). Uppsala Universitet.

Cattoir, V., Poirel, L., Rotimi, V., Soussy, C., & Nordmann, P. (2007). Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. Journal of Antimicrobial Chemotherapy, 60(2), 394-397. https://doi.org/10.1093/jac/dkm204

CLSI. (2020). Performance standards for antimicrobial susceptibility testing 30th ed. M100-S24. Clinical and Laboratory Standards Institute, 34(1), 226.

Dong, Q., Wang, Q., Zhang, Y., Chen, Y., Wang, H., & Ding, H. (2023). Prevalence, antimicrobial resistance, and staphylococcal toxin genes of bla TEM‐1a‐producing Staphylococcus aureus isolated from animals in Chongqing, China. Veterinary Medicine and Science, 9(1), 513-522.https://doi.org/10.1002/vms3.1028

Haag, A. F., Fitzgerald, J. R., & Penadés, J. R. (2019). Staphylococcus aureus in animals. Microbiology Spectrum, 7(3). https://doi.org/10.1128/microbiolspec.GPP3-0060-2019

Harrigan, W. F., & McCance, M. E. (1976). Laboratory Methods in Food and Dairy Microbiology. London, Academic Press, pp 335.

Harris, L., Foster, S., & Richards, S. (2002). An introduction to S. aureus, and techniques for identifying and quantifying S. aureus adhesions in relation to adhesion to biomaterials review. Journal of European Cells and Materials, 4, 39-60. https://doi.org/10.22203/eCM.v004a04

Ivbule, M., Miklasevics, E., Cupane, L., Berzina, L., Balins, A., & Valdovska, A. (2017). Presence of Methicillin-resistant Staphylococcus aureus in slaughterhouse environment, pigs, carcasses, and workers. Journal of Veterinary Research, 61(3), 267-277.
https://doi.org/10.1515/jvetres-2017-0037

Jouini, A., Vinué, L., Slama, K.B., Saenz, Y., Klibi, N., Hammami, S., Boudabous, A., & Torres, C. (2007). Characterization of CTX-M and SHV extended-spectrum β-lactamases and associated resistance genes in Escherichia coli strains of food samples in Tunisia. Journal of Antimicrobial Chemotherapy, 60(5), 1137-1141. https://doi.org/10.1093/jac/dkm316

Klaharn, K., Pichpol, D., Meeyam, T., Pfeiffer, D., Moomon, A., Lohaanukul, P., & Punyapornwithaya, V. (2021). Analysis of nationwide survey data to determine bacterial contamination levels in meat from pig slaughterhouses in Thailand. Food Control, 126, 108005. https://doi.org/10.1016/j.foodcont.2021.108005.

Lin, J., Yeh, K., Liu, H., & Lin, J. (2009). Staphylococcus aureus isolated from pork and chicken carcasses in Taiwan: Prevalence and antimicrobial susceptibility. Journal of Food Protection, 72(3), 608-611. https://doi.org/10.4315/0362-028X-72.3.608

Ly, K. T. L., & Nguyen, T. T. (2016). Study on the variation of quality of pork at markets and supermarkets. CTU Journal of Science (CĐ Nông nghiệp), 11(2), 61-68 (in Vietnamese). https://doi.org/10.22144/ctu.jsi.2016.045

Ministry of Agriculture and Rural Development. (2009). National technical regulation Methods for sampling and storing of fresh meat from slaughterhouses and business establishments for microbiological analysis (QCVN 01-04:2009/BNNPTNT) (in Vietnamese). https://thuvienphapluat.vn/TCVN/Nong-nghiep/QCVN-01-04-2009-BNNPTNT-ky-thuat-lay-va-bao-quan-mau-thit-tuoi-901657.aspx

Ministry of Science and Technology. (2005). Microbiology of food and animal feeding stuffs – Horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species) - Part 1: Technique using Baird-Parker agar medium (TCVN 4830-1:2005) (in Vietnamese). https://thuvienphapluat.vn/phap-luat-doanh-nghiep/bai-viet/tieu-chuan-viet-nam-tcvn-4830-1-2005-vi-sinh-vat-trong-thuc-pham-va-thuc-an-chan-nuoi-phuong-phap-dinh-luong-staphylococci-co-phan-ung-duong-tinh-coag-6992.html

Ministry of Science and Technology. (2009). Fresh meat (TCVN 7046:2009) (in Vietnamese). https://thuvienphapluat.vn/TCVN/Cong-nghe-Thuc-pham/TCVN-7046-2009-thit-tuoi-yeu-cau-ky-thuat-904184.aspx

Ministry of Science and Technology. (2019). Fresh meat (TCVN 7046:2019) (in Vietnamese). https://thuvienphapluat.vn/TCVN/Cong-nghe-Thuc-pham/TCVN-7046-2019-Thit-tuoi-919244.aspx

Momoh, H. A., Kwaga, J. K. P., Bello, M., Sackey, A. K. B., & Larsen, A. R. (2018). Antibiotic resistance and molecular characteristics of Staphylococcus aureus isolated from backyard-raised pigs and pig workers. Tropical Animal Health and Production, 50(7), 1565-1571. https://doi.org/10.1007/s11250-018-1596-5

Moon, D. C., Tamang, M. D., Nam, H. M., Jeong, J. H., Jang, G. C., Jung, S. C., Park, Y. H., & Lim, S. K. (2015). Identification of livestock-associated Methicillin-Resistant Staphylococcus aureus isolates in Korea and molecular comparison between isolates from animal carcasses and slaughterhouse workers. Foodborne Pathogens and Disease, 12(4), 327-334.
https://doi.org/10.1089/fpd.2014.1868

Nguyen, C. T. (2013). Survey on microbial contamination in pork at An Binh concentrated slaughterhouse, Cao Lanh district, and sold at the central market of Cao Lanh city, Dong Thap province (Master Thesis). Can Tho University. (in Vietnamese).

Nguyen, H. X. (2015). Assessment of bacterial contamination levels in pork from livestock import-export companies and domestic slaughterhouses. Hue University Journal of Science: Agriculture and Rural Development, 108(9), 182-190 (in Vietnamese). https://doi.org/10.26459/jard.v108i9.2920

Philips, C. A. (2002). Food Bacteria and health: A practical guide. Chadwick House Group Ltd, pp 144.

Saenz, Y., Brinas, L., Dominguez, E., Ruiz, J., Zarazaga, M., Vila, J., & Torres, C. (2004). Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains of human, animal, and food origins. Antimicrobial Agents and Chemotherapy, 48(10), 3996-4001. https://doi.org/10.1128/AAC.48.10.3996-4001.2004

Sineke, N., Asante, J., Amoako, D. G., Abia, A. L. K., Perrett, K., Bester, L. A., & Essack, S. Y. (2021). Staphylococcus aureus in intensive pig production in South Africa: Antibiotic resistance, virulence determinants and clonality. Pathogengenes, 10(317), 1-19. https://doi.org/10.3390/pathogens10030317

Sommer, M. O. A., Munck, C., Toft-Kehler, R. V., & Andersson, D. I. (2017). Prediction of antibiotic resistance: time for a new preclinical paradigm? Nature Reviews Microbiology, 15, 689-696. https://doi.org/10.1038/nrmicro.2017.75

Stasiak, M., Mackiw, E., Kowalska, J., Kucharek, K., & Postupolski, J. (2021). Silent genes: antimicrobial resistance and antibiotic production. Polish Journal of Microbiology, 70(4), 421-429.
https://doi.org/10.33073/pjm-2021-040

Wu, S., Huang, J., Wu, Q., Zhang, J., Zhang, F., Yang, X., Wu, H., Zeng, H., Chen, M., Ding, Y., Wang, J., Lei, T., Zhang, S., & Xue, L. (2018). Staphylococcus aureus isolated from retail meat and meat products in China: incidence, antibiotic resistance and genetic diversity. Frontiers in Microbiology, 9, 2767. https://doi.org/10.3389/fmicb.2018.02767.

Xu, J., Shi, C., Song, M., Xu, X., Yang, P., Paoli, G., & Shi X. (2014). Phenotypic and gengeneotypic antimicrobial resistance traits of foodborne Staphylococcus aureus isolates from Shanghai. Journal of food science, 79(4), M635-642. doi: 10.1111/1750-3841.12405.
https://doi.org/10.1111/1750-3841.12405

Youssif, N. H., Hafiz, M. N., Halawa, M. A., & Aziz, H. M. (2021). Genes conferring antimicrobial resistance in cattle with subclinical mastitis. Bulgarian Journal of Veterinary Medicine, 24(1), 67-85. https://doi.org/10.15547/bjvm.2019-0028

Zhou, Y., Li, X., & Yan, H. (2020). Genotypic characteristics and correlation of epidemiology of Staphylococcus aureus in healthy pigs, diseased pigs and enviroment. Antibiotics (Basel), 9(12), 839. https://doi.org/10.3390/antibiotics9120839